首页> 外文期刊>Modelling and simulation in engineering >Modelling and Predicting the Breaking Strength and Mass Irregularity of Cotton Rotor-Spun Yarns Containing Cotton Fiber Recovered from Ginning Process by Using Artificial Neural Network Algorithm
【24h】

Modelling and Predicting the Breaking Strength and Mass Irregularity of Cotton Rotor-Spun Yarns Containing Cotton Fiber Recovered from Ginning Process by Using Artificial Neural Network Algorithm

机译:轧花过程中含棉纤维的棉纺纱的断裂强度和质量不规则性的建模与预测

获取原文
获取原文并翻译 | 示例

摘要

One of the main methods to reduce the production costs is waste recycling which is the most important challenge for the future. Cotton wastes collected from ginning process have desirable properties which could be used during spinning process. The purpose of this study was to develop predictive models of breaking strength and mass irregularity (CV_m%) of cotton waste rotor-spun yarns containing cotton waste collected from ginning process by using the artificial neural network trained with backpropagation algorithm. Artificial neural network models have been developed based on rotor diameter, rotor speed, navel type, opener roller speed, ginning waste proportion and yarn linear density as input parameters. The parameters of artificial neural network model, namely, learning, and momentum rate, number of hidden layers and number of hidden processing elements (neurons) were optimized to get the best predictive models. The findings showed that the breaking strength and mass irregularity of rotor spun yarns could be predicted satisfactorily by artificial neural network. The maximum error in predicting the breaking strength and mass irregularity of testing data was 8.34% and 6.65%, respectively.
机译:降低生产成本的主要方法之一是废物回收,这是未来最重要的挑战。从轧花过程中收集的棉花废料具有理想的特性,可以在纺纱过程中使用。这项研究的目的是通过使用反向传播算法训练的人工神经网络,开发包含轧花过程中收集到的含棉废料的废棉转杯纱的断裂强度和质量不规则性(CV_m%)的预测模型。基于转子直径,转子速度,肚脐类型,开松辊速度,轧花废料比例和纱线线密度作为输入参数,已经开发了人工神经网络模型。优化了人工神经网络模型的参数,即学习,动量率,隐藏层数和隐藏处理元素(神经元)数,以获得最佳的预测模型。研究结果表明,通过人工神经网络可以令人满意地预测转杯纺纱的断裂强度和质量不规则性。预测测试数据的断裂强度和质量不规则性的最大误差分别为8.34%和6.65%。

著录项

  • 来源
    《Modelling and simulation in engineering》 |2011年第2期|p.5.1-5.8|共8页
  • 作者单位

    Textile Engineering Department, Isfahan University of Technology, Isfahan 84156-83111, Iran;

    Textile Engineering Department, Isfahan University of Technology, Isfahan 84156-83111, Iran;

    Textile Engineering Department, Isfahan University of Technology, Isfahan 84156-83111, Iran;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号