首页> 外文期刊>Modelling and simulation in engineering >A Comparative Study of Multiple Object Detection Using Haar-Like Feature Selection and Local Binary Patterns in Several Platforms
【24h】

A Comparative Study of Multiple Object Detection Using Haar-Like Feature Selection and Local Binary Patterns in Several Platforms

机译:在多个平台上使用Haar-Like特征选择和局部二进制模式进行多目标检测的比较研究

获取原文
获取原文并翻译 | 示例

摘要

Object detection has been attracting much interest due to the wide spectrum of applications that use it. It has been driven by an increasing processing power available in software and hardware platforms. In this work we present a developed application for multiple objects detection based on OpenCV libraries. The complexity-related aspects that were considered in the object detection using cascade classifier are described. Furthermore, we discuss the profiling and porting of the application into an embedded platform and compare the results with those obtained on traditional platforms. The proposed application deals with real-time systems implementation and the results give a metric able to select where the cases of object detection applications may be more complex and where it may be simpler.
机译:由于使用对象检测的广泛应用,对象检测已经引起了极大的兴趣。它是由软件和硬件平台中可用的处理能力增强所驱动的。在这项工作中,我们提出了一个基于OpenCV库的多对象检测开发应用程序。描述了在使用级联分类器的对象检测中考虑的与复杂度相关的方面。此外,我们讨论了将应用程序进行概要分析并将其移植到嵌入式平台中的情况,并将结果与​​在传统平台上获得的结果进行了比较。所提出的应用程序处理实时系统的实现,并且结果给出了一个度量标准,可以选择在哪些情况下对象检测应用程序的情况可能更复杂,在何处可能更简单。

著录项

  • 来源
    《Modelling and simulation in engineering》 |2015年第2015期|948960.1-948960.8|共8页
  • 作者单位

    Sidi Mohammed Ben Abdellah University, Faculty of Science and Technology, Renewable Energy and Smart Systems Laboratory, BP 2202, 30000 Fez, Morocco;

    Sidi Mohammed Ben Abdellah University, Faculty of Science and Technology, Renewable Energy and Smart Systems Laboratory, BP 2202, 30000 Fez, Morocco;

    Sidi Mohammed Ben Abdellah University, National School of Applied Sciences, Renewable Energy and Smart Systems Laboratory, BP 72, 30000 Fez, Morocco;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号