首页> 外文期刊>IEEE transactions on mobile computing >A Context-Aware Framework for Detecting Sensor-Based Threats on Smart Devices
【24h】

A Context-Aware Framework for Detecting Sensor-Based Threats on Smart Devices

机译:用于检测智能设备上基于传感器的威胁的上下文感知框架

获取原文
获取原文并翻译 | 示例

摘要

Sensors (e.g., light, gyroscope, and accelerometer) and sensing-enabled applications on a smart device make the applications more user-friendly and efficient. However, the current permission-based sensor management systems of smart devices only focus on certain sensors and any App can get access to other sensors by just accessing the generic sensor Application Programming Interface (API). In this way, attackers can exploit these sensors in numerous ways: they can extract or leak users' sensitive information, transfer malware, or record or steal sensitive information from other nearby devices. In this paper, we propose 6thSense, a context-aware intrusion detection system which enhances the security of smart devices by observing changes in sensor data for different tasks of users and creating a contextual model to distinguish benign and malicious behavior of sensors. 6thSense utilizes three different Machine Learning-based detection mechanisms (i.e., Markov Chain, Naive Bayes, and LMT). We implemented 6thSense on several sensor-rich Android-based smart devices (i.e., smart watch and smartphone) and collected data from typical daily activities of 100 real users. Furthermore, we evaluated the performance of 6thSense against three sensor-based threats: (1) a malicious App that can be triggered via a sensor, (2) a malicious App that can leak information via a sensor, and (3) a malicious App that can steal data using sensors. Our extensive evaluations show that the 6thSense framework is an effective and practical approach to defeat growing sensor-based threats with an accuracy above 96 percent without compromising the normal functionality of the device. Moreover, our framework reveals minimal overhead.
机译:智能设备上的传感器(例如灯光,陀螺仪和加速度计)和支持感应的应用程序使这些应用程序更加用户友好和高效。但是,当前的智能设备基于许可的传感器管理系统仅关注某些传感器,并且任何App都可以通过访问通用传感器应用程序编程接口(API)来访问其他传感器。这样,攻击者可以通过多种方式利用这些传感器:他们可以提取或泄漏用户的敏感信息,传输恶意软件,或者记录或窃取附近其他设备的敏感信息。在本文中,我们提出了6thSense,这是一种上下文感知的入侵检测系统,可通过观察用户不同任务的传感器数据变化并创建区分传感器的良性和恶意行为的上下文模型来增强智能设备的安全性。 6thSense利用了三种不同的基于机器学习的检测机制(即Markov Chain,Naive Bayes和LMT)。我们在多个基于传感器的,基于Android的智能设备(即智能手表和智能手机)上实施了6thSense,并从100个真实用户的日常活动中收集了数据。此外,我们针对三种基于传感器的威胁评估了6thSense的性能:(1)可以通过传感器触发的恶意应用;(2)可以通过传感器泄漏信息的恶意应用;以及(3)恶意应用可以使用传感器窃取数据。我们的广泛评估表明,6thSense框架是一种有效且实用的方法,可以在不影响设备正常功能的情况下,以高于96%的精度克服日益增长的基于传感器的威胁。此外,我们的框架显示了最小的开销。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号