...
首页> 外文期刊>Microelectronics & Reliability >Hole injection enhanced hot-carrier degradation in PMOSFETs used for systems on chip applications with 6.5-2 nm thick gate-oxides
【24h】

Hole injection enhanced hot-carrier degradation in PMOSFETs used for systems on chip applications with 6.5-2 nm thick gate-oxides

机译:空穴注入增强了用于6.5-2 nm厚栅极氧化物的片上系统的PMOSFET中的热载流子退化

获取原文
获取原文并翻译 | 示例
           

摘要

Hot-carrier reliability is studied in core logic PMOSFETs with a thin gate-oxide (T_(ox) = 2 nm) and in Input/Output PMOSFETs with a thick gate-oxide (6.5 nm) used for systems on chip applications. Hot-hole (HH) injections are found to play a more important role in the injection mechanisms and in the degradation efficiency. This depends on the technology node for stressing voltage conditions corresponding to channel hot-hole injections, i.e. closer to the supply voltage than the other voltage condition. Distinct mechanisms of carrier injections and hot-carrier degradation are found in core devices used for high speed (HS) and low leakage (LL) applications where the hole tunneling current dominates at low voltages while the electron valence band tunneling from the gate occurs at gate-voltages above -1.8 V. Devices with T_(ox) = 6.5 nm have shown the existence of a thermionic hot-hole gate-current which is directly measured at larger voltages. This is related to the increase in the surface doping, the thinning of the drain junction depth and the location of the hot-carrier generation rate which is closer to the interface. Results show that hole injections worsen the hot-carrier damage in thin and thick gate-oxides which are both distinguished by the effects of the interface trap generation, the permanent hole trapping and the hole charging-discharging from slow traps using alternated stressing in thin gate-oxides. This consequently leads to a significant lifetime increase in 2 nm HS, LL devices with respect to 6.5 nm Input/Output devices explained by the dominant effect of the fast interface trap generation due to the hole discharge from slow traps and bulk oxide traps in 2 nm devices at the tunneling distance of the interface.
机译:在用于片上系统的具有薄栅极氧化物(T_(ox)= 2 nm)的核心逻辑PMOSFET和具有较厚栅极氧化物(6.5 nm)的输入/输出PMOSFET中研究了热载流子可靠性。发现热孔(HH)注射在注射机理和降解效率中起着更重要的作用。这取决于对与通道热空穴注入相对应的电压条件施加压力的技术节点,即,与其他电压条件相比更接近电源电压。在用于高速(HS)和低泄漏(LL)应用的核心器件中发现了载流子注入和热载流子降解的不同机理,在这些器件中,空穴隧穿电流在低电压下占主导地位,而从栅极产生的电子价带隧穿在栅极上发生-高于-1.8 V的电压。T_(ox)= 6.5 nm的器件显示存在热电子热孔栅极电流,该电流可在较大电压下直接测量。这与表面掺杂的增加,漏极结深度的变薄以及更靠近界面的热载流子产生速率的位置有关。结果表明,空穴注入使薄壁和厚壁栅氧化物中的热载流子损伤恶化,这两个特征均以界面陷阱产生,永久性空穴俘获和在薄栅中交替施加应力从慢速陷阱中产生空穴充放电为特征。 -氧化物。因此,相对于6.5 nm输入/输出设备,这导致2 nm HS,LL器件的寿命显着增加,这可以解释为快速界面陷阱产生的主要作用,这是由于2 nm中缓慢的陷阱和体氧化物陷阱产生的空穴设备在接口的隧道距离处。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号