...
首页> 外文期刊>Microelectronics & Reliability >Characterization of intermetallic compounds in Cu-Al ball bonds: Mechanical properties, interface delamination and thermal conductivity
【24h】

Characterization of intermetallic compounds in Cu-Al ball bonds: Mechanical properties, interface delamination and thermal conductivity

机译:Cu-Al球形键合中金属间化合物的表征:机械性能,界面分层和导热性

获取原文
获取原文并翻译 | 示例

摘要

In high power automotive electronics copper wire bonding is regarded as the most promising alternative for gold wire bonding in 1st level interconnects and therefore subjected to severe functional requirements. In the Cu-Al ball bond interface the growth of intermetallic compounds may deteriorate the physical and mechanical properties. The layer growth and properties of these intermetallic compounds are crucial in the prediction of the long term behavior. To mimic the growth of intermetallic compounds during and after copper ball bonding, diffusion couples of aluminium and copper were annealed at 225-500 ℃ and chemically analyzed by SEM/EDS. Also five separate intermetallic compounds were melted together from the pure elements and aged in evacuated quartz ampoules for 240 h at 500℃. In this work values for the indentation Young's modulus, load independent hardness, indentation fracture toughness, volumetric densities, interface delamination and thermal conductivity are presented. It can be concluded that the Cu-rich intermetallics Cu_9Al_ and Cu_3Al_2 are less sensitive to fracture and have lower average densities than the other intermetallic compounds. The volumetric decrease during formation causes internal stress. Interfacial delamination initiates in the Al-rich intermetallics (CuAl, CuAl_2) and propagates easily into other intermetallic layers. The Cu_9Al_4-Cu s.s. interface is also found to be susceptible for delamination fracture. The thermal conductivity for 3 intermetallics is much lower than for pure copper or aluminium and in the range of 26-87 W/m~(-1) K~(-1) where Cu_3Al_2 layer has the lowest thermal conductivity (26-33 W/nr~(-1) K~(-1)).
机译:在高功率汽车电子产品中,铜线键合被认为是第一级互连中金线键合的最有希望的替代方法,因此受到严格的功能要求。在Cu-Al球形键界面中,金属间化合物的生长可能会使物理和机械性能恶化。这些金属间化合物的层生长和性能对于长期行为的预测至关重要。为了模拟铜球键合期间和之后的金属间化合物的生长,将铝和铜的扩散对在225-500℃退火,并用SEM / EDS进行化学分析。另外,将五个单独的金属间化合物与纯元素融化在一起,并在抽空的石英安瓿瓶中于500℃老化240小时。在这项工作中,给出了压痕杨氏模量,独立于载荷的硬度,压痕断裂韧性,体积密度,界面分层和导热系数的数值。可以得出结论,与其他金属间化合物相比,富铜金属间化合物Cu_9Al_和Cu_3Al_2对断裂的敏感性较低,并且平均密度较低。形成过程中的体积减小会引起内部应力。界面分层在富铝金属间化合物(CuAl,CuAl_2)中引发,并容易传播到其他金属间层中。 Cu_9Al_4-Cu s.s.还发现界面易于分层断裂。 3种金属间化合物的热导率远低于纯铜或铝,并且在26-87 W / m〜(-1)K〜(-1)的范围内,其中Cu_3Al_2层的热导率最低(26-33 W / nr〜(-1)K〜(-1))。

著录项

  • 来源
    《Microelectronics & Reliability 》 |2013年第8期| 1068-1075| 共8页
  • 作者单位

    TNO Technical Sciences, De Rondom 1, Eindhoven, The Netherlands;

    TNO Technical Sciences, De Rondom 1, Eindhoven, The Netherlands;

    ASML, De Run 6501, Veldhoven, The Netherlands;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号