首页> 外文期刊>Microelectronics & Reliability >Application of coupled electro-thermal and physics-of-failure-based analysis to the design of accelerated life tests for power modules
【24h】

Application of coupled electro-thermal and physics-of-failure-based analysis to the design of accelerated life tests for power modules

机译:基于电热和故障物理的耦合分析在功率模块加速寿命测试设计中的应用

获取原文
获取原文并翻译 | 示例
           

摘要

In the reliability theme a central activity is to investigate, characterize and understand the contributory wear-out and overstress mechanisms to meet through-life reliability targets. For power modules, it is critical to understand the response of typical wear-out mechanisms, for example wire-bond lifting and solder degradation, to in-service environmental and load-induced thermal cycling. This paper presents the use of a reduced-order thermal model coupled with physics-of-failure-based life models to quantify the wear-out rates and life consumption for the dominant failure mechanisms under prospective in-service and qualification test conditions. When applied in the design of accelerated life and qualification tests it can be used to design tests that separate the failure mechanisms (e.g. wire-bond and substrate-solder) and provide predictions of conditions that yield a minimum elapsed test time. The combined approach provides a useful tool for reliability assessment and estimation of remaining useful life which can be used at the design stage or in-service. An example case study shows that it is possible to determine the actual power cycling frequency for which failure occurs in the shortest elapsed time. The results demonstrate that bond-wire degradation is the dominant failure mechanism for all power cycling conditions whereas substrate-solder failure dominates for externally applied (ambient or passive) thermal cycling.
机译:在可靠性主题中,一项中心活动是调查,表征和理解造成磨损和超应力的机制,以达到终生可靠性目标。对于电源模块,了解典型的磨损机制(例如引线键合提升和焊锡退化)对使用环境和负载引起的热循环的响应至关重要。本文介绍了使用降阶热模型和基于故障物理的寿命模型来量化预期的在役和合格测试条件下主要失效机制的磨损率和寿命消耗。当用于加速寿命和合格性测试的设计时,它可用于设计将失效机制(例如引线键合和基体焊料)分开的测试,并提供可产生最少经过测试时间的条件预测。组合方法为可靠性评估和估计剩余使用寿命提供了有用的工具,可以在设计阶段或在使用中使用。案例研究表明,可以确定在最短的时间内发生故障的实际功率循环频率。结果表明,键合线退化是所有功率循环条件下的主要失效机理,而衬底焊料的失效在外部(环境或被动)热循环中占主导地位。

著录项

  • 来源
    《Microelectronics & Reliability》 |2014年第1期|172-181|共10页
  • 作者单位

    University of Nottingham, School of Electrical and Electronic Engineering, Nottingham, United Kingdom;

    School of Computing and Mathematical Sciences, University of Greenwich, United Kingdom;

    School of Computing and Mathematical Sciences, University of Greenwich, United Kingdom;

    University of Nottingham, School of Electrical and Electronic Engineering, Nottingham, United Kingdom;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号