首页> 外文期刊>Microelectronics & Reliability >Particle filter approach to lifetime prediction for microelectronic devices and systems with multiple failure mechanisms
【24h】

Particle filter approach to lifetime prediction for microelectronic devices and systems with multiple failure mechanisms

机译:具有多种故障机制的微电子设备和系统的寿命预测的粒子滤波方法

获取原文
获取原文并翻译 | 示例

摘要

Lifetime prediction for microelectronic devices and systems is complicated by many factors including the validity of linear acceleration, choice of extrapolation model, presence of multiple failure mechanisms with common driving forces, correlation between failure mechanisms, time-variant loading (voltage pulses) etc ... With real-time prognostics and health management coming up as a useful alternative to conventional post-failure reliability data analysis, significant progress has been made in estimating the individual lifetime of microelectronic devices/systems during operation (real-time). In this study, we present a case study of decoding the contributions of the bias temperature instability (BTI) and hot carrier injection (HCI) mechanisms to the overall time-dependent threshold voltage (V-TH) shift observed in real-time during a conventional HCI stress test applied to a single NMOS device. Assuming no prior knowledge of the time exponents for V-TH degradation for both the BTI and HCI mechanisms, our methodology enables us to deconvolute the overall V-TH data signal, predict the remaining useful life (RUL) for the device (given a threshold failure criterion) and extract the distribution of the power-law exponents for the pure-HCI and pure-BTI mechanisms. We used the particle filter based sequential Monte Carlo (SMC) technique here for the prognostic study and the advantage of our approach is its generic use for non-linear systems and non-Gaussian noise trends. The impact of prognostics based data-driven algorithms in dynamic lifecycle estimation of microelectronic devices is evident in this work and such an approach can be handy in high-power space electronics applications when the reliability (health/robustness) of a single device (integrated in the satellite) needs to be studied (under normal operating conditions) and there is no large sample size population of similar devices available for a conventional accelerated stress test exercise off-field. To our knowledge, this is the first study applying the particle filter technique for a multiple failure mechanism scenario. The accuracy of our RUL estimates was compared with real data extracted from past experimental studies. (C) 2015 Elsevier Ltd. All rights reserved.
机译:微电子设备和系统的寿命预测受许多因素的影响,包括线性加速度的有效性,外推模型的选择,具有共同驱动力的多个失效机制的存在,失效机制之间的相关性,时变负载(电压脉冲)等。随着实时预测和健康管理作为常规的故障后可靠性数据分析的有用替代方法,在估计操作(实时)期间微电子设备/系统的单个寿命方面已经取得了重大进展。在这项研究中,我们提供了一个案例研究,以解码偏置温度不稳定性(BTI)和热载流子注入(HCI)机制对在整个过程中实时观察到的总体时间相关阈值电压(V-TH)偏移的贡献。应用于单个NMOS器件的常规HCI应力测试。假设没有关于BTI和HCI机制的V-TH降解时间指数的先验知识,我们的方法使我们能够对整个V-TH数据信号进行反卷积,预测设备的剩余使用寿命(RUL)(给定阈值)。失效准则)并提取纯HCI和纯BTI机制的幂律指数分布。我们在这里使用了基于粒子滤波的顺序蒙特卡洛(SMC)技术进行预后研究,我们的方法的优势在于它在非线性系统和非高斯噪声趋势中的通用用法。在这项工作中,基于预测的数据驱动算法在微电子设备动态生命周期估计中的影响是显而易见的,当单个设备(集成在设备中)的可靠性(健康/鲁棒性)时,这种方法在大功率空间电子应用中会很方便。卫星)需要进行研究(在正常操作条件下),并且没有大量样本量的类似设备可用于常规的加速压力测试场外运动。据我们所知,这是首次将粒子滤波技术应用于多故障机制场景的研究。我们将RUL估算的准确性与从过去的实验研究中提取的真实数据进行了比较。 (C)2015 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号