首页> 外文期刊>Microelectronics & Reliability >Application of the defect clustering model for forming, SET and RESET statistics in RRAM devices
【24h】

Application of the defect clustering model for forming, SET and RESET statistics in RRAM devices

机译:缺陷聚类模型在RRAM器件中的形成,SET和RESET统计中的应用

获取原文
获取原文并翻译 | 示例

摘要

The choice of the right statistical model to describe the distribution of switching parameters ( forming, SET and RESET voltages) is a critical requirement for RRAM, as it is used to analyze the worst case scenarios of operation that have to be accounted for while designing the cross-bar array structures, so as to ensure a robust design of the circuit and reliable data storage unit. Several models have been proposed in the recent past to characterize the voltage variations in V-FORM, V-SET. and V-RESET using the percolation framework. However, most of these models assume defect generation to be a Poisson process and apply the standard Weibull distribution for parameter extraction and lifetime extrapolation. Recent dielectric breakdown studies both at the front-end as well as back-end have shown that the Weibull statistics does not describe the stochastic trends well enough, more so in down-scaled structures at the low and high percentile regions given the possibility of defect clustering which is either physics-driven or process quality-driven. This, phenomenon of defect clustering is all the more applicable in the context of resistive random access memory (RRAM) devices, as switching occurs repeatedly at ruptured filament locations where defect clusters pre-exist. This study examines the validity of the clustering model for RRAM switching parameter statistics (time/voltage to FORM, SET and RESET) and presents a physical picture to explain the origin of clustering in RRAM. A large set of data from various published studies has been used here to test the suitability and need for a clustering model based reliability assessment. Dependence of the clustering factor on temperature, voltage, device area, dielectric microstructure and resistance state has also been examined. (C) 2016 Elsevier Ltd. All rights reserved.
机译:选择正确的统计模型来描述开关参数(形成,设置和复位电压)的分布是RRAM的关键要求,因为它用于分析在设计电源时必须考虑的最坏情况下的工作情况。交叉阵列结构,以确保电路的稳健设计和可靠的数据存储单元。最近提出了几种模型来表征V-FORM,V-SET中的电压变化。和使用渗滤框架的V-RESET。但是,大多数模型都将缺陷生成视为泊松过程,并将标准的威布尔分布用于参数提取和寿命外推。最近在前端和后端进行的介电击穿研究表明,威布尔统计数据不能很好地描述随机趋势,考虑到存在缺陷的可能性,在低百分比和高百分比区域的缩小结构中更是如此群集是物理驱动还是过程质量驱动。在电阻式随机存取存储器(RRAM)器件的情况下,这种缺陷簇现象更加适用,因为切换在缺陷簇预先存在的破裂的灯丝位置反复发生。这项研究检查了用于RRAM切换参数统计(时间/电压到FORM,SET和RESET)的聚类模型的有效性,并提供了一张物理图来解释RRAM中聚类的起源。这里已使用来自各种已发表研究的大量数据来测试适用性和对基于聚类模型的可靠性评估的需求。还研究了聚类因子对温度,电压,器件面积,介电微结构和电阻状态的依赖性。 (C)2016 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号