...
首页> 外文期刊>Microelectronics & Reliability >FPGA-based design of advanced BMS implementing SoC/SoH estimators
【24h】

FPGA-based design of advanced BMS implementing SoC/SoH estimators

机译:实现基于SoC / SoH估算器的高级BMS基于FPGA的设计

获取原文
获取原文并翻译 | 示例
           

摘要

Energy storage system, usually a battery, become essential part for all electric drive vehicles such as hybrid electric vehicle (HEV), plug-in hybrid electric vehicle (PHEV) and electric vehicle (EV) in the coming decades. These energy storage systems include Li-ion batteries, Ni-MH batteries, lead-acid batteries and ultra-capacitors. An accurate Battery Management System (BMS) is highly demanded integrated system in all electric derive vehicles to ensure the optimum use of an energy storage system. The battery's state monitoring & evaluation, charge control and cell balancing are the important features of any BMS. However, due to unavailability of inaccurate battery's state-of-charge(SoC)/state-of-health (SoH) estimators and uncertainty of battery's performance, new approaches of BMS design are under development to control batteries optimally and hence, the vehicle performance. In addition, most of the existing BMSs either do not provide SoH at all or provide it as a function of capacity degradation over the battery usage. This research paper presents the field-programmable gate array (FPGA)-based Advanced BMS design using MATLAB-to-FPGA design flow. The Advanced BMS design provides the combined estimation of both SoC and SoH of a rechargeable battery. This research paper also summarizes the Neuro-Fuzzy & statistical models implemented in Advanced BMS for accurate estimation of battery's SoC & Soli respectively. Further, this research paper presents the selection of suitable FPGA and its hardware realization implementing Advanced BMS. Finally, the experimental results are confirmed by simulation and synthesis of its register transfer level (RTL) design. FPGA-based Advanced BMS would provide the best chip solution for a generalized BMS with benefits of low Non-recurring engineering (NRE) cost, low power consumption, high speed of operation, large reconfigurable logic and large data storage capacity.
机译:储能系统(通常是电池)已成为未来几十年内所有电动汽车(如混合动力汽车(HEV),插电式混合动力汽车(PHEV)和电动汽车(EV))的重要组成部分。这些储能系统包括锂离子电池,镍氢电池,铅酸电池和超级电容器。精确的电池管理系统(BMS)是所有电动派遣车辆中高度要求的集成系统,以确保最佳地使用储能系统。电池的状态监控与评估,充电控制和电池平衡是任何BMS的重要功能。但是,由于无法使用不正确的电池充电状态(SoC)/健康状态(SoH)估算器以及电池性能的不确定性,正在开发BMS设计的新方法来最佳地控制电池,从而改善车辆性能。另外,大多数现有的BMS根本不提供SoH或根据电池使用量的容量下降来提供SoH。本研究论文使用MATLAB-to-FPGA设计流程介绍了基于现场可编程门阵列(FPGA)的Advanced BMS设计。先进的BMS设计提供了可充电电池SoC和SoH的组合估算。该研究论文还总结了Advanced BMS中实现的Neuro-Fuzzy和统计模型,分别用于准确估计电池的SoC和Soli。此外,本研究论文还介绍了合适的FPGA的选择及其实现Advanced BMS的硬件实现。最后,通过对寄存器传输级(RTL)设计的仿真和综合,证实了实验结果。基于FPGA的Advanced BMS将为通用BMS提供最佳的芯片解决方案,具有以下优点:低经常性工程(NRE)成本,低功耗,高速运行,可重配置逻辑和大数据存储容量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号