首页> 外文期刊>Microelectronics & Reliability >Prognostics of aluminum electrolytic capacitors using artificial neural network approach
【24h】

Prognostics of aluminum electrolytic capacitors using artificial neural network approach

机译:铝电解电容器的人工神经网络预测

获取原文
获取原文并翻译 | 示例

摘要

In this work, an effort is being made to monitor the condition of in-circuit aluminum electrolytic capacitor using artificial neural network (ANN). Recent industrial surveys on the reliability of power electronic systems shows that most of faults occur due to the wear out of aluminum electrolytic capacitors and thermal stress is the major cause for its parametric degradation. The condition of target capacitors can be estimated by monitoring variation in equivalent series resistance (ESR) from the initial pristine state value. ANN is used to estimate ESR of pristine and weak target capacitors at the test conditions. The data set for training and testing of proposed back-propagation trained artificial neural network are experimentally obtained from the developed test bed. Using the test bed, target capacitors are subjected to different operating frequency and temperature in the output section of DC/DC buck converter circuit to determine the effect of variation in electrical and thermal stress on ESR value. After off-line training, the proposed ANN is implemented using National Instruments LabVIEW software. A low cost microcontroller is programmed for real time data acquisition of target capacitors and the serial transmission of acquired dataset to the LabVIEW software installed at host computer. The performance of the proposed method is evaluated in real time by comparing the resulting ESR with the experimental values of in-circuit target capacitors. The proposed ANN, once trained properly, can be used for different circuits and in different operating conditions because of its generalization capability.
机译:在这项工作中,正在努力使用人工神经网络(ANN)监视在线铝电解电容器的状态。最近有关电力电子系统可靠性的工业调查表明,大多数故障是由于铝电解电容器的磨损而引起的,热应力是导致其参数退化的主要原因。目标电容器的状态可以通过监视原始原始状态值的等效串联电阻(ESR)的变化来估算。在测试条件下,使用ANN估算原始和弱目标电容器的ESR。从开发的试验台上以实验方式获得用于训练和测试拟议的反向传播训练的人工神经网络的数据集。使用测试台,目标电容器在DC / DC降压转换器电路的输出部分中经受不同的工作频率和温度,以确定电应力和热应力变化对ESR值的影响。经过离线培训后,拟议的人工神经网络将使用National Instruments LabVIEW软件实施。一个低成本的微控制器经过编程,可以实时采集目标电容器的数据,并将采集到的数据集串行传输到主机上安装的LabVIEW软件。通过将生成的ESR与在线目标电容器的实验值进行比较,可以实时评估所提出方法的性能。拟议的人工神经网络,一旦经过适当的训练,由于其泛化能力,可以用于不同的电路和不同的工作条件。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号