首页> 外文期刊>Microelectronics & Reliability >Heuristic Kalman optimized particle filter for remaining useful life prediction of lithium-ion battery
【24h】

Heuristic Kalman optimized particle filter for remaining useful life prediction of lithium-ion battery

机译:启发式卡尔曼优化的粒子滤波器,可预测锂离子电池的剩余使用寿命

获取原文
获取原文并翻译 | 示例

摘要

Accurate prediction of the remaining useful life of a faulty component is important to the prognosis and health management of any engineering system. In recent times, the particle filter algorithm and several variants of it have been used as an effective method for this purpose. However, particle filter suffers from sample degeneracy and impoverishment. In this study, we introduce the Heuristic Kalman algorithm, a metaheuristic optimization approach, in combination with particle filtering to tackle sample degeneracy and impoverishment. Our proposed method is compared with the particle swarm optimized particle filtering technique, another popular meta heuristic approach for improvement of particle filtering. The prediction accuracy and precision of our proposed method is validated using several Lithium ion battery data sets from NASA (R) Ames research center.
机译:准确预测故障组件的剩余使用寿命对于任何工程系统的预后和健康管理都非常重要。近年来,粒子过滤器算法及其几种变体已被用作用于此目的的有效方法。然而,颗粒过滤器遭受样品退化和贫困的困扰。在这项研究中,我们介绍了启发式卡尔曼算法(一种启发式优化方法),并结合了粒子滤波来解决样本退化和贫困问题。我们提出的方法与粒子群优化的粒子滤波技术进行了比较,后者是另一种流行的改进粒子滤波的元启发式方法。我们使用NASA(R)Ames研究中心的几个锂离子电池数据集验证了我们提出的方法的预测准确性和精确度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号