首页> 外文期刊>Microelectronics & Reliability >Fault diagnosis and prognosis based on physical knowledge and reliability data: Application to MOS Field-Effect Transistor
【24h】

Fault diagnosis and prognosis based on physical knowledge and reliability data: Application to MOS Field-Effect Transistor

机译:基于物理知识和可靠性数据的故障诊断和预后:应用于MOS场效应晶体管

获取原文
获取原文并翻译 | 示例

摘要

The reliability data are very useful in maintenance operations since they are used to calculate the Mean Time To Failure. However, they are rarely used for the online calculation of the Remaining Useful Life (RUL). This is because the features measured in the reliability tests are not always measurable online. In this paper, the proposed solution is usage of physical knowledge of the components to build models linking these features to the variables measurable online. Then, the physical models are used to generate health indices whose evolution can be estimated and predicted online, and the reliability data used for initializing the trend models of the health indices. To guarantee the robustness of the remaining useful life estimation to changes in Condition Monitoring, this paper proposes to update online the drift parameter of Wiener process. The latter is used to model the trend of the health indices. The results obtained by the most used updating methods in the literature are analyzed and compared in order to highlight the influence of the model updating on prognosis performance. Experimental results, obtained by an application to estimate the RUL of MOS Field-Effect Transistor, show the effectiveness of the proposed method.
机译:可靠性数据在维护操作中非常有用,因为它们用于计算平均故障时间。但是,它们很少用于在线计算剩余的使用寿命(RUL)。这是因为在可靠性测试中测量的功能并不总是在线可衡量的。在本文中,所提出的解决方案是使用组件的物理知识,以构建将这些功能链接到在线可衡量的变量的模型。然后,物理模型用于生成健康指数,其演进可以估计和预测在线,以及用于初始化健康指标的趋势模型的可靠性数据。为了保证剩余使用寿命估算的稳健性,条件监测变化,本文建议在在线更新维纳流程的漂移参数。后者用于模拟健康指数的趋势。通过文献中最常用的更新方法获得的结果进行了分析,并比较,以突出模型更新对预后性能的影响。通过应用来估计MOS场效应晶体管ruL的实验结果,表明了所提出的方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号