首页> 外文期刊>Microelectronics & Reliability >A prognostic methodology for power MOSFETs under thermal stress using echo state network and particle filter
【24h】

A prognostic methodology for power MOSFETs under thermal stress using echo state network and particle filter

机译:使用回波状态网络和粒子滤波器的热应力下功率MOSFET的预测方法

获取原文
获取原文并翻译 | 示例

摘要

Reinforcing the reliability of power semiconductor devices is crucial for extending the lifetime of the power-converter based electrical systems. This paper aims at developing a novel prognostics methodology for estimating the Remaining Useful Life (RUL) of the power Metal-Oxide Field-Effect Transistors (MOSFETs). The variation of on-state resistance as an important fault indicator under thermal overstress is utilized as the main database. A recently proposed neural network paradigm, namely Echo State Network (ESN) is utilized here to derive a degradation model, taking into account its high efficiency in modeling nonlinear dynamical systems. Meanwhile, a particle filter approach is developed to update the initially trained ESN model and to quantify the uncertainty of the RUL prediction online. The accuracy and efficiency of the proposed prognostic methodology has been verified based on an accelerated aging experimental dataset.
机译:增强功率半导体器件的可靠性对于延长基于功率转换器的电气系统的寿命至关重要。本文旨在开发一种新颖的预测方法,以估算功率金属氧化物场效应晶体管(MOSFET)的剩余使用寿命(RUL)。导通状态电阻的变化作为热过载下的重要故障指标,被用作主要数据库。考虑到在非线性动力学系统建模中的高效性,最近提出的神经网络范式,即回声状态网络(ESN)在这里用于推导退化模型。同时,开发了粒子滤波方法来更新最初训练的ESN模型并在线量化RUL预测的不确定性。基于加速老化实验数据集,已验证了所提出的预测方法的准确性和效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号