首页> 外文期刊>Microelectronics & Reliability >Investigation of artificial neural network algorithm based IGBT online condition monitoring
【24h】

Investigation of artificial neural network algorithm based IGBT online condition monitoring

机译:基于人工神经网络算法的IGBT在线状态监测研究。

获取原文
获取原文并翻译 | 示例

摘要

Reliability of Insulated Gate Bipolar Transistor (IGBT) has drawn much attention in recent years. Online monitoring of IGBT is an effective mehod to improve IGBT operation reliability. State-of-the-art online monitoring methods for IGBT are based on thermal sensitive electrical parameters (TSEPs) extraction, but the TSEPs can be hardly obtained with required accuracy in practical application. This paper investigates Artificial Neural Network (ANN) based IGBT online monitoring method. DC link voltage and H-bridge output voltage, which are practical measurable parameters, are selected as the input of ANN. Both single input single output (SISO) and multiple input single output (MISO) neural networks are analysed and discussed. With the proposed method, the relationship of the practical measurable parameters and investigated TSEP, on-resistance of IGBT, can be established. By applying the existing criterion of TSEPs for the IGBT reliability, the prediction of the IGBT failure can be achieved. Simulations verify that the errors brought by the established model are within precision requirements.
机译:近年来,绝缘栅双极晶体管(IGBT)的可靠性备受关注。 IGBT的在线监视是提高IGBT操作可靠性的有效方法。最新的IGBT在线监测方法基于热敏电参数(TSEP)提取,但是在实际应用中很难以所需的精度获得TSEP。本文研究了基于人工神经网络(ANN)的IGBT在线监测方法。实际可测量的参数直流母线电压和H桥输出电压被选作ANN的输入。分析并讨论了单输入单输出(SISO)和多输入单输出(MISO)神经网络。利用所提出的方法,可以建立实际可测量参数与所研究的TSEP,IGBT的导通电阻之间的关系。通过将现有TSEPs标准用于IGBT可靠性,可以实现IGBT故障的预测。仿真验证了所建立模型带来的误差在精度要求之内。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号