首页> 外文期刊>Microelectronics & Reliability >An artificial neural network approach for wafer dicing saw quality prediction
【24h】

An artificial neural network approach for wafer dicing saw quality prediction

机译:人工神经网络的晶圆切块锯质量预测方法

获取原文
获取原文并翻译 | 示例

摘要

The wafer dicing saw is a critical process of the semiconductor IC assembly manufacturing, where chipping and cracking can damage internal circuits and result in device failure. This article applies back propagation neural networks to learn and analyze data transmitted from the machine sensors for predictive purposes. Experimental results show that neural network processing provides prediction accuracy of 75%. The results can be monitored during real-time machine operation. If predictive values exceed a certain specification, an alarm can be triggered to prevent product loss, thus increasing production efficiency.
机译:晶圆切割机是半导体IC组件制造的关键过程,其中的碎裂和破裂会损坏内部电路并导致器件故障。本文应用反向传播神经网络来学习和分析从机器传感器传输的数据,以进行预测。实验结果表明,神经网络处理提供了75%的预测精度。可以在实时机器运行期间监视结果。如果预测值超过特定规格,则可以触发警报以防止产品损失,从而提高生产效率。

著录项

  • 来源
    《Microelectronics & Reliability》 |2018年第12期|257-261|共5页
  • 作者单位

    Dept. of Electronic Engineering, National Kaohsiung University of Sciences and Technology;

    Dept. of Electronic Engineering, National Kaohsiung University of Sciences and Technology;

    Dept. of Electronic Engineering, National Kaohsiung University of Sciences and Technology;

    Dept. of Electronic Engineering, National Kaohsiung University of Sciences and Technology;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Wafer dicing saw; Back propagation neural network; Quality prediction;

    机译:晶圆切块锯;反向传播神经网络;质量预测;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号