首页> 外文期刊>Microelectronic Engineering >Controlling the size of replicable polydimethylsiloxane (PDMS) molds/stamps using a stepwise thermal shrinkage process
【24h】

Controlling the size of replicable polydimethylsiloxane (PDMS) molds/stamps using a stepwise thermal shrinkage process

机译:使用逐步热收缩工艺控制可复制的聚二甲基硅氧烷(PDMS)模具/印模的尺寸

获取原文
获取原文并翻译 | 示例
           

摘要

We demonstrate, for the first time, the size-controllability of replicable three-dimensional polydimethylsiloxane (PDMS) molds/stamps using a stepwise shrinkage effect in a repeated heat treatment process. Various microstructures were heated in ambient nitrogen gas to study the temperature effect on the thermal shrinkage of PDMS. The ramped heat-up and cool-down speeds of the temperature in ambient nitrogen gas were 10 °C/min to various maximum temperatures and 2 °C/min to room temperature, respectively. The three-dimensional shape of the PDMS structure was observed and measured with a scanning laser microscope. The shrinkage ratios of the PDMS samples heated to 300, 500, and 700 °C were approximately 10%, 13%, and 24%, respectively. There were small variations in shrinkage, which depended on the micropattem dimensions. The higher temperatures, such as 500 and 700 °C, were not optimum for the sequential replica molding process, because of locally cracked and bent shapes as well as increased surface roughness. Therefore, we generated and replicated PDMS molds/ stamps using a 300 °C multi-step heat treatment process. During the multi-step heat treatment process, the microstructures became narrower and deeper, which may have been caused by differences in the thermal capacity within the embossed micropatterns region, the PDMS structure, and the curing process of the initial PDMS structure. Thus, the structure width decreased as the depth of the samples increased.
机译:我们首次展示了可重复使用的三维聚二甲基硅氧烷(PDMS)模具/印模的尺寸可控性,它在重复的热处理过程中使用了逐步收缩的效果。在环境氮气中加热各种微结构,以研究温度对PDMS热收缩的影响。环境氮气中温度的升温和降温速度分别达到各种最高温度分别为10°C / min和达到室温为2°C / min。用扫描激光显微镜观察并测量PDMS结构的三维形状。加热到300、500和700°C的PDMS样品的收缩率分别约为10%,13%和24%。收缩率的变化很小,这取决于微图案的尺寸。较高的温度(例如500和700°C)对于顺序复制品成型工艺不是最佳的,因为局部裂纹和弯曲形状以及增加的表面粗糙度。因此,我们使用300°C的多步热处理工艺生成并复制了PDMS模具/印章。在多步热处理过程中,微观结构变得越来越狭窄和更深,这可能是由压纹微图案区域内的热容量,PDMS结构以及初始PDMS结构的固化过程的差异引起的。因此,结构宽度随着样品深度的增加而减小。

著录项

  • 来源
    《Microelectronic Engineering》 |2011年第8期|p.2286-2289|共4页
  • 作者

    Ok Chan Jeong; Satoshi Konishi;

  • 作者单位

    Department of Biomedical Eng., Inje University. Gimhae 621-749. South Korea;

    Department of Micro System Technology, Ritsumeikan University. Kusatsu, Shiga 525-8577, Japan;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    polydimethylsiloxane (pdms); thermal shrinkage; mold/stamp;

    机译:聚二甲基硅氧烷(PDMS);热收缩率;模具/压印;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号