首页> 外文期刊>Methodology and Computing in Applied Probability >Weak Convergence of the Empirical Mean Excess Process with Application to Estimate the Negative Tail Index
【24h】

Weak Convergence of the Empirical Mean Excess Process with Application to Estimate the Negative Tail Index

机译:经验均值过剩过程的弱收敛与估计负尾指数的应用

获取原文
获取原文并翻译 | 示例

摘要

Let Y i , 1 ≤ i ≤ n be i.i.d. random variables with the generalized Pareto distribution W γ,σ with γ < 0. We define the empirical mean excess process with respect to {Y i , 1 ≤ i ≤ n} as in Eq. 2.1 (see below) and investigate its weak convergence. As an application, two new estimators of the negative tail index γ are constructed based on the linear regression to the empirical mean excess function and their consistency and asymptotic normality are obtained.
机译:令Y i ,1≤i≤n为i.d.具有γ<0的广义Pareto分布Wγ,σ的随机变量。我们定义了关于{Y i ,1≤i≤n}的经验均值过剩过程,如等式1中所示。 2.1(请参阅下文)并研究其弱收敛。作为一种应用,基于对经验均值过剩函数的线性回归,构造了两个新的负尾指数γ估计量,并获得了它们的一致性和渐近正态性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号