首页> 外文期刊>Mechanical systems and signal processing >Integration of structural health monitoring and fatigue damage prognosis
【24h】

Integration of structural health monitoring and fatigue damage prognosis

机译:综合结构健康监测和疲劳损伤预后

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

This paper presents a Bayesian probabilistic methodology to integrate model-based fatigue damage prognosis (FDP) with online and offline structural health monitoring (SHM) data. The prognosis uses fracture mechanics-based fatigue crack growth modeling, along with quantification of various sources of uncertainty, including natural variability, data uncertainty and model errors. These uncertainty sources are connected using a Bayesian network and a probabilistic sensitivity analysis is performed to assess the uncertainty contributions from these sources. The cycle-by-cycle simulation of fatigue crack growth is expedited via the use of a surrogate modeling technique (Gaussian process model) to replace computationally expensive finite element analysis. Real-time monitoring data of external variable amplitude loading history is used to construct a Bayesian autoregressive integrated moving average (ARIMA) model to predict and update the loading. On-ground crack inspection data is used to quantify the uncertainty in the initial and current size of an existing crack, using the Bayesian approach. Three possible cases of inspection results are considered: (1) crack is not detected; (2) crack is detected but not measured; (3) crack is detected and measured. Different scenarios of data availability (load monitoring data and inspection data) are considered for the prognosis of an individual component in a fleet. A numerical example, surface cracking in a rotorcraft mast under service loading, is implemented to illustrate the proposed methodology. The results of prognosis are validated using Bayesian hypothesis testing.
机译:本文提出了一种贝叶斯概率方法论,将基于模型的疲劳损伤预后(FDP)与在线和离线结构健康监测(SHM)数据相集成。预后使用基于断裂力学的疲劳裂纹扩展模型,并对各种不确定性来源(包括自然变异性,数据不确定性和模型误差)进行量化。使用贝叶斯网络将这些不确定性源连接起来,并进行概率敏感性分析以评估来自这些源的不确定性贡献。疲劳裂纹扩展的逐周期仿真通过使用替代建模技术(高斯过程模型)来代替计算上昂贵的有限元分析,从而得到了加速。外部可变振幅载荷历史的实时监测数据用于构建贝叶斯自回归综合移动平均值(ARIMA)模型来预测和更新载荷。使用贝叶斯方法,将地面裂缝检查数据用于量化现有裂缝的初始尺寸和当前尺寸的不确定性。考虑三种可能的检查结果:(1)未发现裂纹; (2)检测到裂纹但未测量到裂纹; (3)检测并测量裂纹。考虑了数据可用性的不同场景(负载监控数据和检查数据),以预测车队中单个组件的状况。数值示例,即在服役载荷下旋翼飞机桅杆的表面开裂,被用来说明所提出的方法。使用贝叶斯假设检验验证预后的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号