...
首页> 外文期刊>Mechanical systems and signal processing >Frequency domain, parametric estimation of the evolution of the time-varying dynamics of periodically time-varying systems from noisy input-output observations
【24h】

Frequency domain, parametric estimation of the evolution of the time-varying dynamics of periodically time-varying systems from noisy input-output observations

机译:频域,从嘈杂的输入-输出观测值估计周期性时变系统的时变动力学演化的参数估计

获取原文
获取原文并翻译 | 示例
           

摘要

This paper presents a frequency domain, parametric identification method for continuous- and discrete-time, slow linear time-periodic (LTP) systems from input-output measurements. In this framework, the output as well as the input is allowed to be corrupted by stationary noise (i. e. an errors-in-variables approach is adopted). It is assumed that the system under consideration can be excited by a broad-band periodic signal with a user-defined amplitude spectrum (i. e. a multisine), and that the periodicity of the excitation signal T_(exc) can be synchronized with the periodicity of the time-variation T_(sys) (i.e. T_(exc)/T_(sys)∈Q), such that the system reaches a steady state (a periodic solution). T_(sys) is also known as the pumping period. Once the parametric estimation of the time-evolution of the system parameters has been performed, the system model is evaluated at the level of the instantaneous transfer function (also known as system function, or parametric transfer function), which rigorously characterizes LTP systems. If the dynamics of the LTP system are slowly varying or the system is linear parameter varying (LPV), a frozen transfer function approach is provided to easily visualize and assess the quality of the estimated model. To give the estimated quantities a quality label, uncertainty bounds on the model-related quantities (such as the time-periodic (TP) system parameters, the frozen transfer function, the frozen resonance frequency, etc.) are derived in this paper as well. Besides, a clear distinction between the instantaneous and the frozen transfer function concept is made, and both can be estimated with the proposed identification scheme. The user decides which transfer function definition suits best its purpose in practice. Finally, the identification algorithm is applied to a simulation example and to real measurements on an extendible robot arm.
机译:本文提出了一种基于输入输出测量的连续时间和离散时间,慢线性时间周期(LTP)系统的频域参数识别方法。在该框架中,允许输出和输入被固定噪声破坏(即,采用了误差误差方法)。假设所考虑的系统可以由具有用户定义幅度谱的宽带周期信号(即多正弦波)激励,并且激励信号T_(exc)的周期可以与随时间变化的T_(sys)(即T_(exc)/ T_(sys)∈Q),以使系统达到稳态(周期解)。 T_(sys)也称为泵送周期。一旦对系统参数的时间演化进行了参数估计,就可以在瞬时传递函数(也称为系统函数或参数传递函数)的级别上对系统模型进行评估,该模型可以严格表征LTP系统。如果LTP系统的动力学变化缓慢或系统线性参数变化(LPV),则可以使用冻结传递函数方法轻松地可视化和评估估计模型的质量。为了给估计的量提供质量标签,还导出了与模型相关的量(例如时间周期(TP)系统参数,冻结传递函数,冻结共振频率等)的不确定范围。 。此外,在瞬时传递函数概念和冻结传递函数概念之间进行了明确区分,并且可以通过提出的识别方案对两者进行估计。用户可以决定哪种传递函数定义最适合其实际用途。最后,将识别算法应用于仿真示例和可扩展机械臂上的实际测量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号