首页> 外文期刊>Mechanical systems and signal processing >Soft-constrained interval predictor models and epistemic reliability intervals: A new tool for uncertainty quantification with limited experimental data
【24h】

Soft-constrained interval predictor models and epistemic reliability intervals: A new tool for uncertainty quantification with limited experimental data

机译:软限制间隔预测仪模型和认知可靠性间隔:具有有限实验数据的不确定性量化的新工具

获取原文
获取原文并翻译 | 示例

摘要

Interval Predictor Models (IPMs) offer a non-probabilistic, interval-valued, characterization of the uncertainty affecting random data generating processes. IPMs are constructed directly from data, with no assumptions on the distributions of the uncertain factors driving the process, and are therefore exempt from the subjectivity induced by such a practice. The reliability of an IPM defines the probability of correct predictions for future samples and, in practice, its true value is always unknown due to finite samples sizes and limited understanding of the process. This paper proposes an overview of scenario optimization programs for the identification of IPMs. Traditional IPM identification methods are compared with a new scheme which softens the scenario constraints and exploits a trade-off between reliability and accuracy. The new methods allows prescribing predictors that achieve higher accuracy for a quantifiable reduction in the reliability. Scenario optimization theory is the mathematical tool used to prescribe formal epistemic bounds on the predictors reliability. A review of relevant theorems and bounds is proposed in this work. Scenario-based reliability bounds hold distribution-free, non asymptotically, and quantify the uncertainty affecting the model's ability to correctly predict future data. The applicability of the new approach is tested on three examples: ⅰ) on the modelling of a trigonometric function affected by a noise term, ⅱ) on the identification of a black-box system-controller dynamic response model and, ⅲ) on the modelling of the vibration response of a car suspension arm crossed by a crack of unknown length. The points of strength and limitations of the new IPM are discussed based on the accuracy, computational cost, and width of the resulting epistemic bounds.
机译:间隔预测器模型(IPM)提供了影响随机数据生成过程的不确定性的非概率,间隔值表征。 IPM直接从数据构建,没有关于驱动该过程的不确定因素的分布的假设,因此免于这种实践所引起的主观性。 IPM的可靠性定义了对未来样本的正确预测的概率,并且在实践中,由于有限的样本尺寸和对过程的理解有限,其真实值始终是未知的。本文建议概述用于识别IPM的方案优化程序。将传统的IPM识别方法与新方案进行比较,该方案软化了方案约束,并利用可靠性和准确性之间的权衡。新方法允许规定可预测的预测因子,以实现更高的准确性,以便可靠地降低可靠性。场景优化理论是用于在预测器可靠性方面规定正式认识范围的数学工具。在这项工作中提出了对相关定理和界限的审查。基于方案的可靠性界限可保持无分布,非渐近,并量化影响模型正确预测未来数据的能力的不确定性。新方法的适用性在三个例子上进行了测试:Ⅰ)对受噪声术语影响的三角函数的建模,Ⅱ)在造型中识别黑匣子系统 - 控制器动态响应模型和Ⅲ)汽车悬架臂的振动响应由未知长度的裂缝交叉。新IPM的强度和局限性基于所产生的认知界限的准确性,计算成本和宽度来讨论。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号