机译:民用结构振动损伤检测述评:从传统方法到机器学习和深度学习应用
Civil Construction and Environmental Engineering Iowa State University Ames IA USA;
Department of Building Technology Linnaeus University Sweden;
Department of Electrical Engineering Qatar University Qatar;
Department of Civil Engineering Qatar University Qatar;
Department of Signal Processing Tampere University of Technology Finland;
Department of Aerospace Engineering University of Michigan Ann Arbor MI USA;
Structural damage detection; Structural Health Monitoring; Vibration-based methods; Machine Learning; Deep Learning; Infrastructure health; Artificial Neural Networks; Civil infrastructure;
机译:通过机器学习在桥梁中基于振动的损伤检测
机译:集成学习和平均法的基于振动的结构损伤检测
机译:血液污迹图像中传统机器学习与深层学习模型的综述
机译:基于振动的结构损伤探测小型钢桥结构的深度学习方法
机译:深入学习与卫星图像自然灾害后民事结构的损害评估
机译:深度学习和机器智能在计算机硅药物发现中的最新应用:方法工具和数据库
机译:民用结构振动损伤检测述评:从传统方法到机器学习和深度学习应用