首页> 外文期刊>Mechanical systems and signal processing >Multiscale topology optimization for minimizing frequency responses of cellular composites with connectable graded microstructures
【24h】

Multiscale topology optimization for minimizing frequency responses of cellular composites with connectable graded microstructures

机译:多尺度拓扑优化,可最小化具有可连接渐变结构的多孔复合材料的频率响应

获取原文
获取原文并翻译 | 示例

摘要

This paper develops an efficient multiscale topology optimization method for minimizing the frequency response of cellular composites over a given frequency interval, which consist of spatially-varying connectable graded microstructures. In this method, multiple prototype microstructures are topologically optimized in a progressive manner considering the sensitivity information of two adjacent prototype microstructures, achieving their similar topological configurations. A shape interpolation method is employed to interpolate the shapes of the prototype microstructures to generate a series of graded microstructures from the solid one to void, which are featured with essential interconnections generated by similar shapes of these prototype microstructures. The variable thickness sheet method is adopted at macroscale to generate a free material distribution under a global volume constraint. In order to reduce the computational burden, at microscale, a Kriging metamodel constructed by key graded microstructures as sample points is employed to predict the effective properties of all the microstructures within macrostructure. Furthermore, at macroscale, the quasi-static Ritz vector method is incorporated for efficient frequency response analysis. The method of moving asymptotes is adopted to update the design variables at both scales. In the proposed method, the configurations of spatially-varying connectable graded microstructures at microscale and their distribution at macroscale are simultaneously optimized, which ensures a sufficiently large design space to minimize the frequency response of cellular composites. The topological variations of multiple prototype microstructures further expand this advantage. Numerical examples are provided to test the performance of the proposed multiscale topology optimization method for minimizing the frequency responses of cellular composites.
机译:本文开发了一种有效的多尺度拓扑优化方法,该方法可在给定的频率间隔内使蜂窝复合材料的频率响应最小化,该方法由空间变化的可连接渐变微观结构组成。在这种方法中,考虑到两个相邻原型微结构的灵敏度信息,以渐进方式对多个原型微结构进行拓扑优化,以实现其相似的拓扑配置。采用形状插值方法对原型微结构的形状进行插值,以生成从固体到空隙的一系列渐变微结构,这些微结构的特征是通过这些原型微结构的相似形状生成的必要互连。宏观上采用可变厚度片材方法在全局体积约束下生成自由材料分布。为了减轻计算负担,在微观尺度上,采用由关键分级微观结构作为样本点构造的Kriging元模型来预测宏观结构内所有微观结构的有效特性。此外,在宏观上,准静态Ritz矢量方法被纳入有效的频率响应分析。采用移动渐近线的方法在两个尺度上更新设计变量。在所提出的方法中,同时优化了微尺度上空间变化的可连接渐变微观结构的配置及其在宏观尺度上的分布,这确保了足够大的设计空间以最小化多孔复合材料的频率响应。多个原型微结构的拓扑变化进一步扩展了这一优势。提供了数值示例,以测试所提出的多尺度拓扑优化方法的性能,该方法可将蜂窝复合材料的频率响应降至最低。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号