首页> 外文期刊>Mathematics and computers in simulation >High-order orthogonal spline collocation methods for two-point boundary value problems with interfaces
【24h】

High-order orthogonal spline collocation methods for two-point boundary value problems with interfaces

机译:界面两点边值问题的高阶正交样条搭配方法

获取原文
获取原文并翻译 | 示例

摘要

Orthogonal spline collocation methods (OSC) are used to solve two-point boundary value problems (BVPs) with interfaces. We first consider the one-dimensional Helmholtz equation with piecewise wave numbers solved using the standard OSC approach. For the solution of self-adjoint two-point BVPs with interfaces, we employ OSC with monomial bases of degree r, where r =3,4. In each case, the results of numerical experiments involving numerous examples from the literature exhibit optimal accuracy in the L~∞ and L~2 norms of order r + 1, and order r accuracy in the H~1 norm. Moreover, superconvergence of order 2r - 2 in the nodal error in the OSC approximation and also in its derivative when r = 4 is observed. Each OSC approach gives rise to almost block diagonal linear systems which are solved using standard software.
机译:正交样条搭配方法(OSC)用于解决带界面的两点边值问题(BVP)。我们首先考虑使用标准OSC方法求解的具有分段波数的一维Helmholtz方程。对于具有接口的自伴两点BVP的解决方案,我们使用OSC,其单项底数为r,其中r = 3,4。在每种情况下,涉及大量文献实例的数值实验结果在r〜1阶的L〜∞和L〜2范数中表现出最佳精度,在H〜1范数中表现出r阶精度。此外,观察到在OSC近似中的节点误差以及在r = 4时其导数的2r-2阶超收敛。每种OSC方法都会产生使用标准软件求解的几乎块对角线线性系统。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号