首页> 外文期刊>Mathematical Programming >A Primal-Dual Decomposition Algorithm for Multistage Stochastic Convex Programming
【24h】

A Primal-Dual Decomposition Algorithm for Multistage Stochastic Convex Programming

机译:多阶段随机凸规划的原始-对偶分解算法

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a new and high performance solution method for multistage stochastic convex programming. Stochastic programming is a quantitative tool developed in the field of optimization to cope with the problem of decision-making under uncertainty. Among others, stochastic programming has found many applications in finance, such as asset-liability and bond-portfolio management. However, many stochastic programming applications still remain computationally intractable because of their overwhelming dimensionality. In this paper we propose a new decomposition algorithm for multistage stochastic programming with a convex objective and stochastic recourse matrices, based on the path-following interior point method combined with the homogeneous self-dual embedding technique. Our preliminary numerical experiments show that this approach is very promising in many ways for solving generic multistage stochastic programming, including its superiority in terms of numerical efficiency, as well as the flexibility in testing and analyzing the model.
机译:本文提出了一种新的高性能多阶段随机凸规划求解方法。随机规划是在优化领域开发的一种定量工具,用于应对不确定性下的决策问题。除其他外,随机编程在金融中发现了许多应用,例如资产负债和债券投资组合管理。但是,由于它们具有压倒性的优势,许多随机编程应用程序仍然在计算上难以处理。本文基于路径跟踪内点法结合齐次自对偶嵌入技术,提出了一种具有凸目标和随机追索矩阵的多阶段随机规划分解算法。我们的初步数值实验表明,该方法在解决通用多级随机规划方面有很多前景,包括其在数值效率方面的优势以及测试和分析模型的灵活性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号