首页> 外文期刊>Mathematical Programming >A Population-based Approach for Hard Global Optimization Problems based on Dissimilarity Measures
【24h】

A Population-based Approach for Hard Global Optimization Problems based on Dissimilarity Measures

机译:基于相似度测度的基于群体的硬全局优化问题方法

获取原文
获取原文并翻译 | 示例

摘要

When dealing with extremely hard global optimization problems, i.e. problems with a large number of variables and a huge number of local optima, heuristic procedures are the only possible choice. In this situation, lacking any possibility of guaranteeing global optimality for most problem instances, it is quite difficult to establish rules for discriminating among different algorithms. We think that in order to judge the quality of new global optimization methods, different criteria might be adopted like, e.g.: efficiency – measured in terms of the computational effort necessary to obtain the putative global optimum
机译:当处理极其困难的全局优化问题时,即具有大量变量和大量局部最优值的问题时,启发式过程是唯一可能的选择。在这种情况下,由于无法保证大多数问题实例的全局最优性,因此很难建立区分不同算法的规则。我们认为,为了判断新的全局优化方法的质量,可以采用不同的标准,例如:效率-根据获得推定全局最优所需的计算量来衡量

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号