首页> 外文期刊>Mathematical Problems in Engineering >Practical Speech Emotion Recognition Based on Online Learning: From Acted Data to Elicited Data
【24h】

Practical Speech Emotion Recognition Based on Online Learning: From Acted Data to Elicited Data

机译:基于在线学习的实用语音情感识别:从代理数据到推荐数据

获取原文
获取原文并翻译 | 示例

摘要

We study the cross-database speech emotion recognition based on online learning. How to apply a classifier trained on acted data to naturalistic data, such as elicited data, remains a major challenge in today's speech emotion recognition system. We introduce three types of different data sources: first, a basic speech emotion dataset which is collected from acted speech by professional actors and actresses; second, a speaker-independent data set which contains a large number of speakers; third, an elicited speech data set collected from a cognitive task. Acoustic features are extracted from emotional utterances and evaluated by using maximal information coefficient (MIC). A baseline valence and arousal classifier is designed based on Gaussian mixture models. Online training module is implemented by using AdaBoost. While the offline recognizer is trained on the acted data, the online testing data includes the speaker- independent data and the elicited data. Experimental results show that by introducing the online learning module our speech emotion recognition system can be better adapted to new data, which is an important character in real world applications.
机译:我们研究基于在线学习的跨数据库语音情感识别。在当今的语音情感识别系统中,如何将经过行为数据训练的分类器应用于自然数据(例如引出的数据)仍然是一个重大挑战。我们介绍了三种类型的不同数据源:首先,一个基本的言语情感数据集,它是由专业演员和女演员从演说中收集的;第二,独立于说话者的数据集,其中包含大量说话者;第三,从认知任务收集的语音数据集。从情绪话语中提取声学特征,并使用最大信息系数(MIC)进行评估。基于高斯混合模型设计基线价和唤醒分类器。在线培训模块是使用AdaBoost实现的。在对离线识别器进行作用数据训练的同时,在线测试数据包括与说话者无关的数据和引出数据。实验结果表明,通过引入在线学习模块,我们的语音情感识别系统可以更好地适应新数据,这是现实应用中的重要特征。

著录项

  • 来源
    《Mathematical Problems in Engineering》 |2013年第7期|265819.1-265819.9|共9页
  • 作者单位

    School of Information Science and Engineering, Southeast University, Nanjing 210096, China;

    School of Information Science and Engineering, Southeast University, Nanjing 210096, China;

    School of Information Science and Engineering, Southeast University, Nanjing 210096, China;

    School of Information Science and Engineering, Southeast University, Nanjing 210096, China;

    School of Information Science and Engineering, Southeast University, Nanjing 210096, China;

    School of Information Science and Engineering, Southeast University, Nanjing 210096, China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号