首页> 外文期刊>Mathematical Problems in Engineering >Fast Image Segmentation Based on Efficient Implementation of the Chan-Vese Model with Discrete Gray Level Sets
【24h】

Fast Image Segmentation Based on Efficient Implementation of the Chan-Vese Model with Discrete Gray Level Sets

机译:基于离散灰度级Chan-Vese模型高效实现的快速图像分割

获取原文
获取原文并翻译 | 示例

摘要

A new image segmentation based on fast implementation of the Chan-Vese model is proposed. This approach differs from previous methods in that we do not need to solve the Euler-Lagrange equation of the underlying variational problem. First, through experiments, we observe that for the smooth image segmentation, Chan-Vese model (CVM) can be simplified. Utilizing the Gaussian low pass filter, we pretreat the original image and regularize the level curves. Then, we calculate the energy directly on discrete gray level sets, find the minimizer of the energy, and obtain the segmentation results. We analyze the algorithm and prove that under discrete gray level sets, the global minimum of the energy is same as the one obtained by the previous methods. Another advantage of this method is that the reinitialization is not needed. Since there are at most 255 discrete gray level sets, the algorithm improves the computational speed dramatically. And the complexity of the algorithm is O(N), where N is the number of pixels in the image. So even for the large images, it is also very efficient. We apply our segmentation algorithm to synthetic and real world images to emphasize the performances of our model compared with other segmentation models.
机译:提出了一种基于Chan-Vese模型快速实现的图像分割方法。这种方法与以前的方法的不同之处在于,我们不需要求解基本变分问题的Euler-Lagrange方程。首先,通过实验,我们发现对于平滑图像分割,可以简化Chan-Vese模型(CVM)。利用高斯低通滤波器,对原始图像进行预处理并调整电平曲线。然后,我们直接在离散的灰度级集上计算能量,找到能量的最小值,并获得分割结果。我们对该算法进行了分析,证明了在离散灰度集下,能量的全局最小值与先前方法获得的能量最小值相同。该方法的另一个优点是不需要重新初始化。由于最多有255个离散灰度集,因此该算法极大地提高了计算速度。算法的复杂度为O(N),其中N是图像中的像素数。因此,即使对于大图像,它也非常有效。我们将分割算法应用于合成图像和现实世界图像,以强调我们模型与其他分割模型相比的性能。

著录项

  • 来源
    《Mathematical Problems in Engineering》 |2013年第2期|508543.1-508543.16|共16页
  • 作者

    Songsong Li; Qingpu Zhang;

  • 作者单位

    School of Management, Harbin Institute of Technology, Harbin 150001, China;

    School of Management, Harbin Institute of Technology, Harbin 150001, China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号