首页> 外文期刊>Mathematical Problems in Engineering >A New Online Random Particles Optimization Algorithm for Mobile Robot Path Planning in Dynamic Environments
【24h】

A New Online Random Particles Optimization Algorithm for Mobile Robot Path Planning in Dynamic Environments

机译:动态环境中移动机器人路径规划的在线随机粒子优化新算法

获取原文
获取原文并翻译 | 示例

摘要

A new algorithm named random particle optimization algorithm (RPOA) for local path planning problem of mobile robots in dynamic and unknown environments is proposed. The new algorithm inspired from bacterial foraging technique is based on particles which are randomly distributed around a robot. These particles search the optimal path toward the target position while avoiding the moving obstacles by getting help from the robots sensors. The criterion of optimal path selection relies on the particles distance to target and Gaussian cost function assign to detected obstacles. Then, a high level decision making strategy will decide to select best mobile robot path among the proceeded particles, and finally a low level decision control provides a control signal for control of considered holonomic mobile robot. This process is implemented without requirement to tuning algorithm or complex calculation, and furthermore, it is independent from gradient base methods such as heuristic (artificial potential field) methods. Therefore, in this paper, the problem of local mobile path planning is free from getting stuck in local minima and is easy computed. To evaluate the proposed algorithm, some simulations in three various scenarios are performed and results are compared by the artificial potential field.
机译:针对动态和未知环境下移动机器人的局部路径规划问题,提出了一种新的算法,称为随机粒子优化算法。受细菌觅食技术启发的新算法基于随机分布在机器人周围的颗粒。这些粒子通过从机器人传感器获得帮助来搜寻朝向目标位置的最佳路径,同时避免移动障碍。最佳路径选择的标准取决于粒子到目标的距离以及分配给检测到的障碍物的高斯成本函数。然后,高级决策策略将决定在进行的粒子中选择最佳移动机器人路径,最后,低级决策控制提供控制信号,以控制所考虑的完整移动机器人。该过程无需调整算法或复杂的计算即可实现,而且,它与诸如启发式(人工势场)方法之类的基于梯度的方法无关。因此,在本文中,本地移动路径规划的问题不会陷入本地最小值,并且易于计算。为了评估所提出的算法,在三种不同情况下进行了一些仿真,并通过人工势场对结果进行了比较。

著录项

  • 来源
    《Mathematical Problems in Engineering》 |2013年第2期|491346.1-491346.9|共9页
  • 作者单位

    Department of Mechanical Engineering, Sharif University of Technology, Tehran 3567-11365, Iran;

    Department of Electrical and Computer Engineering, Semnan University, Semnan 35131-19111, Iran;

    Department of Electrical Engineering, Amirkabir University of Technology (AUT), Tehran 15875-4413, Iran;

    Department of Electrical and Computer Engineering, Semnan University, Semnan 35131-19111, Iran;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号