首页> 外文期刊>Mathematical Problems in Engineering >Method to Locate Contaminant Source and Estimate Emission Strength
【24h】

Method to Locate Contaminant Source and Estimate Emission Strength

机译:污染源定位及排放强度估算方法

获取原文
获取原文并翻译 | 示例

摘要

People greatly concern the issue of air quality in some confined spaces, such as spacecraft, aircraft, and submarine. With the increase of residence time in such confined space, contaminant pollution has become a main factor which endangers life. It is urgent to identify a contaminant source rapidly so that a prompt remedial action can be taken. A procedure of source identification should be able to locate the position and to estimate the emission strength of the contaminant source. In this paper, an identification method was developed to realize these two aims. This method was developed based on a discrete concentration stochastic model. With this model, a sensitivity analysis algorithm was induced to locate the source position, and a Kalman filter was used to further estimate the contaminant emission strength. This method could track and predict the source strength dynamically. Meanwhile, it can predict the distribution of contaminant concentration. Simulation results have shown the virtues of the method.
机译:人们非常关注某些密闭空间中的空气质量问题,例如航天器,飞机和潜艇。随着在这种密闭空间中的停留时间的增加,污染物污染已经成为危害生命的主要因素。迫切需要迅速识别污染源,以便迅速采取补救措施。污染源识别程序应能够确定位置并估计污染源的排放强度。本文提出了一种识别方法来实现这两个目标。该方法是基于离散浓度随机模型开发的。在该模型中,引入了灵敏度分析算法来定位源位置,并使用卡尔曼滤波器进一步估计污染物的排放强度。该方法可以动态跟踪和预测源强度。同时,它可以预测污染物浓度的分布。仿真结果表明了该方法的优越性。

著录项

  • 来源
    《Mathematical Problems in Engineering》 |2013年第16期|163612.1-163612.7|共7页
  • 作者单位

    North China Univ Technol, Coll Informat Engn, Beijing 100041, Peoples R China.;

    North China Univ Technol, Coll Informat Engn, Beijing 100041, Peoples R China.;

    Beijing Univ Aeronaut & Astronaut, Sch Aeronaut Sci & Engn, Beijing 100191, Peoples R China.;

    China Aeropolytechnol Estab, Ctr Qual Engn, Beijing 100028, Peoples R China.;

    North China Univ Technol, Coll Informat Engn, Beijing 100041, Peoples R China.;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号