首页> 外文期刊>Mathematical Problems in Engineering >Artificial Bee Colony Algorithm Based on K-Means Clustering for Multiobjective Optimal Power Flow Problem
【24h】

Artificial Bee Colony Algorithm Based on K-Means Clustering for Multiobjective Optimal Power Flow Problem

机译:基于K-Means聚类的人工蜂群算法求解多目标最优潮流问题

获取原文
获取原文并翻译 | 示例

摘要

An improvedmultiobjective ABCalgorithmbased on K-means clustering, called CMOABC, is proposed. To fasten the convergence rate of the canonical MOABC, the way of information communication in the employed bees' phase is modified. For keeping the population diversity, the multiswarm technology based on K-means clustering is employed to decompose the population into many clusters. Due to each subcomponent evolving separately, after every specific iteration, the population will be reclustered to facilitate information exchange among different clusters. Application of the new CMOABC on several multiobjective benchmark functions shows a marked improvement in performance over the fast nondominated sorting genetic algorithm (NSGA-II), the multiobjective particle swarm optimizer (MOPSO), and the multiobjective ABC (MOABC). Finally, the CMOABC is applied to solve the real-world optimal power flow (OPF) problem that considers the cost, loss, and emission impacts as the objective functions. The 30-bus IEEE test system is presented to illustrate the application of the proposed algorithm. The simulation results demonstrate that, compared to NSGA-II, MOPSO, and MOABC, the proposed CMOABC is superior for solving OPF problem, in terms of optimization accuracy.
机译:提出了一种改进的基于K均值聚类的多目标ABC算法CMOABC。为了提高经典MOABC的收敛速度,修改了所用蜜蜂阶段的信息通信方式。为了保持种群的多样性,采用了基于K-means聚类的多群技术将种群分解为许多簇。由于每个子组件分别发展,因此在每个特定的迭代之后,将重新聚集总体以促进不同集群之间的信息交换。新的CMOABC在多个多目标基准函数上的应用显示出与快速非支配排序遗传算法(NSGA-II),多目标粒子群优化器(MOPSO)和多目标ABC(MOABC)相比,性能有了显着提高。最后,将CMOABC用于解决以成本,损耗和排放影响为目标函数的现实世界最佳潮流(OPF)问题。提出了30总线IEEE测试系统,以说明该算法的应用。仿真结果表明,与NSGA-II,MOPSO和MOABC相比,所提出的CMOABC在优化精度方面优于OPF问题。

著录项

  • 来源
    《Mathematical Problems in Engineering》 |2015年第7期|762853.1-762853.18|共18页
  • 作者单位

    Univ Chinese Acad Sci, Beijing 100049, Peoples R China.;

    Chinese Acad Sci, Shenyang Inst Automat, Dept Informat Serv & Intelligent Control, Shenyang 110016, Peoples R China.;

    Tianjin Polytech Univ, Sch Comp Sci & Software, Tianjin 300387, Peoples R China.;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号