首页> 外文期刊>Mathematical Problems in Engineering >Quaternion-Based Improved Artificial Bee Colony Algorithm for Color Remote Sensing Image Edge Detection
【24h】

Quaternion-Based Improved Artificial Bee Colony Algorithm for Color Remote Sensing Image Edge Detection

机译:基于四元数的改进人工蜂群算法在彩色遥感图像边缘检测中的应用

获取原文
获取原文并翻译 | 示例

摘要

As the color remote sensing image has the most notable features such as huge amount of data, rich image details, and the containing of too much noise, the edge detection becomes a grave challenge in processing of remote sensing image data. To explore a possible solution to the urgent problem, in this paper, we first introduced the quaternion into the representation of color image. In this way, a color can be represented and analyzed as a single entity. Then a novel artificial bee colony method named improved artificial bee colony which can improve the performance of conventional artificial bee colony was proposed. In this method, in order to balance the exploration and the exploitation, two new search equations were presented to generate candidate solutions in the employed bee phase and the onlookers phase, respectively. Additionally, some more reasonable artificial bee colony parameters were proposed to improve the performance of the artificial bee colony. Then we applied the proposed method to the quaternion vectors to perform the edge detection of color remote sensing image. Experimental results show that our method can get a better edge detection effect than other methods.
机译:由于彩色遥感影像具有数据量大,图像细节丰富,噪声过多等最显着特征,因此边缘检测成为遥感影像数据处理中的严峻挑战。为了探索解决紧急问题的可能方法,本文首先将四元数引入彩色图像的表示中。这样,可以将颜色表示和分析为单个实体。然后提出了一种新的人工蜂群方法,称为改良人工蜂群,它可以改善常规人工蜂群的性能。在这种方法中,为了平衡勘探和开发,提出了两个新的搜索方程,分别在所采用的蜜蜂阶段和旁观者阶段生成候选解。此外,提出了一些更合理的人工蜂群参数,以提高人工蜂群的性能。然后,将所提出的方法应用于四元数矢量,以进行彩色遥感图像的边缘检测。实验结果表明,与其他方法相比,我们的方法可以获得更好的边缘检测效果。

著录项

  • 来源
    《Mathematical Problems in Engineering》 |2015年第3期|138930.1-138930.10|共10页
  • 作者单位

    Sichuan Univ Arts & Sci, Sch Comp Sci, Dazhou 635000, Peoples R China.;

    Chengdu Univ Technol, Coll Geophys, Chengdu 610059, Peoples R China.;

    China Acad Telecommun Technol, State Key Lab Wireless Mobile Commun, Beijing 100191, Peoples R China.;

    Sichuan Univ Arts & Sci, Sch Comp Sci, Dazhou 635000, Peoples R China.;

    Sichuan Univ Arts & Sci, Sch Comp Sci, Dazhou 635000, Peoples R China.;

    Sichuan Univ Arts & Sci, Sch Comp Sci, Dazhou 635000, Peoples R China.;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号