首页> 外文期刊>Mathematical Problems in Engineering >A New Robust Diagnostic Plot for Classifying Good and Bad High Leverage Points in a Multiple Linear Regression Model
【24h】

A New Robust Diagnostic Plot for Classifying Good and Bad High Leverage Points in a Multiple Linear Regression Model

机译:用于对多元线性回归模型中的好点和坏点的高杠杆点进行分类的新型鲁棒诊断图

获取原文
获取原文并翻译 | 示例

摘要

Identification of high leverage point is crucial because it is responsible for inaccurate prediction and invalid inferential statement as it has a larger impact on the computed values of various estimates. It is essential to classify the high leverage points into good and bad leverage points because only the bad leverage points have an undue effect on the parameter estimates. It is now evident that when a group of high leverage points is present in a data set, the existing robust diagnostic plot fails to classify them correctly. This problem is due to the masking and swamping effects. In this paper, we propose a new robust diagnostic plot to correctly classify the good and bad leverage points by reducing both masking and swamping effects. The formulation of the proposed plot is based on the Modified Generalized Studentized Residuals. We investigate the performance of our proposed method by employing a Monte Carlo simulation study and some well-known data sets. The results indicate that the proposed method is able to improve the rate of detection of bad leverage points and also to reduce swamping and masking effects.
机译:高杠杆点的识别至关重要,因为它会导致不准确的预测和无效的推论陈述,因为它对各种估计的计算值产生较大的影响。必须将高杠杆点分为好杠杆点和坏杠杆点,因为只有坏杠杆点才会对参数估计值产生不适当的影响。现在很明显,当数据集中存在一组高杠杆点时,现有的鲁棒诊断图无法正确地对其进行分类。此问题归因于掩蔽和沼泽效应。在本文中,我们提出了一种新的鲁棒性诊断图,可通过减少掩蔽和沼泽效应来正确地区分好和坏杠杆点。拟议地块的表述基于修改后的广义学生剩余数。我们通过采用蒙特卡洛模拟研究和一些著名的数据集来研究我们提出的方法的性能。结果表明,所提出的方法能够提高不良杠杆点的检测率,并且能够减少沼泽和掩蔽效应。

著录项

  • 来源
    《Mathematical Problems in Engineering》 |2015年第23期|279472.1-279472.12|共12页
  • 作者单位

    Univ Putra Malaysia, Fac Sci, Serdang 43400, Malaysia|Univ Putra Malaysia, Inst Math Res, Serdang 43400, Malaysia|ATU, Al Dewanyia Tech Inst, Dewanyia, Iraq;

    Univ Putra Malaysia, Fac Sci, Serdang 43400, Malaysia|Univ Putra Malaysia, Inst Math Res, Serdang 43400, Malaysia;

    Ball State Univ, Dept Math Sci, Muncie, IN 47306 USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号