首页> 外文期刊>Mathematical Problems in Engineering >Integrating the Symmetry Image and Improved Sparse Representation for Railway Fastener Classification and Defect Recognition
【24h】

Integrating the Symmetry Image and Improved Sparse Representation for Railway Fastener Classification and Defect Recognition

机译:结合对称图像和改进的稀疏表示法进行铁路紧固件分类和缺陷识别

获取原文
获取原文并翻译 | 示例

摘要

The detection of fastener defects is an important task for ensuring the safety of railway traffic. The earlier automatic inspection systems based on computer vision can detect effectively the completely missing fasteners, but they have weaker ability to recognize the partially worn ones. In this paper, we propose a method for detecting both partly worn and completely missing fasteners, the proposed algorithm exploits the first and second symmetry sample of original testing fastener image and integrates them for improved representation-based fastener recognition. This scheme is simple and computationally efficient. The underlying rationales of the scheme are as follows: First, the new virtual symmetrical images really reflect some possible appearance of the fastener; then the integration of two judgments of the symmetrical sample for fastener recognition can somewhat overcome the misclassification problem. Second, the improved sparse representation method discarding the training samples that are "far" from the test sample and uses a small number of samples that are "near" to the test sample to represent the test sample, so as to perform classification and it is able to reduce the side-effect of the error identification problem of the original fastener image. The experimental results show that the proposed method outperforms state-of-the-art fastener recognition methods.
机译:紧固件缺陷的检测是确保铁路交通安全的重要任务。较早的基于计算机视觉的自动检查系统可以有效地检测出完全缺失的紧固件,但是识别较旧的紧固件的能力较弱。在本文中,我们提出了一种检测部分磨损和完全缺失的紧固件的方法,该算法利用原始测试紧固件图像的第一和第二对称样本并将其集成以改进基于表示的紧固件识别。该方案简单且计算效率高。该方案的基本原理如下:首先,新的虚拟对称图像确实反映了紧固件的某些外观。然后将对称样本的两个判断结合起来进行紧固件识别就可以克服分类错误的问题。其次,改进的稀疏表示方法丢弃训练样本中距离较远的训练样本,并使用少量靠近样本的样本来表示样本,从而进行分类。能够减少原始紧固件图像的错误识别问题的副作用。实验结果表明,该方法优于最新的紧固件识别方法。

著录项

  • 来源
    《Mathematical Problems in Engineering》 |2015年第23期|462528.1-462528.11|共11页
  • 作者单位

    Southwest Jiaotong Univ, Sch Mech Engn, Chengdu 610031, Sichuan, Peoples R China;

    Southwest Jiaotong Univ, Sch Mech Engn, Chengdu 610031, Sichuan, Peoples R China;

    Southwest Jiaotong Univ, Sch Mech Engn, Chengdu 610031, Sichuan, Peoples R China;

    Southwest Jiaotong Univ, Sch Mech Engn, Chengdu 610031, Sichuan, Peoples R China;

    Southwest Jiaotong Univ, Sch Mech Engn, Chengdu 610031, Sichuan, Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号