首页> 外文期刊>Mathematical Problems in Engineering >SPH Simulation of Acoustic Waves: Effects of Frequency, Sound Pressure, and Particle Spacing
【24h】

SPH Simulation of Acoustic Waves: Effects of Frequency, Sound Pressure, and Particle Spacing

机译:声波的SPH模拟:频率,声压和粒子间距的影响

获取原文
获取原文并翻译 | 示例

摘要

Acoustic problems consisting of multiphase systems or with deformable boundaries are difficult to describe using mesh-based methods, while the meshfree, Lagrangian smoothed particle hydrodynamics (SPH) method can handle such complicated problems. In this paper, after solving linearized acoustic equations with the standard SPH theory, the feasibility of the SPH method in simulating sound propagation in the time domain is validated. The effects of sound frequency, maximum sound pressure amplitude, and particle spacing on numerical error and time cost are then subsequently discussed based on the sound propagation simulation. The discussion based on a limited range of frequency and sound pressure demonstrates that the rising of sound frequency increases simulation error, and the increase is nonlinear, whereas the rising sound pressure has limited effects on the error. In addition, decreasing the particle spacing reduces the numerical error, while simultaneously increasing the CPU time. The trend of both changes is close to linear on a logarithmic scale.
机译:使用基于网格的方法很难描述由多相系统或具有可变形边界的声学问题,而无网格,拉格朗日平滑粒子流体动力学(SPH)方法可以解决此类复杂问题。本文采用标准的SPH理论求解线性化声学方程后,验证了SPH方法在时域模拟声传播的可行性。随后,基于声音传播仿真,讨论了声频,最大声压幅值和粒子间距对数值误差和时间成本的影响。在有限的频率和声压范围内进行的讨论表明,声频的升高会增加模拟误差,并且该增加是非线性的,而声压的升高对误差的影响有限。另外,减小粒子间距可减少数值误差,同时增加CPU时间。两种变化的趋势在对数刻度上接近线性。

著录项

  • 来源
    《Mathematical Problems in Engineering》 |2015年第20期|348314.1-348314.7|共7页
  • 作者单位

    Huazhong Univ Sci & Technol, Sch Naval Architecture & Ocean Engn, Wuhan 430074, Peoples R China|Univ Calif San Diego, Dept Mech & Aerosp Engn, La Jolla, CA 92093 USA;

    Huazhong Univ Sci & Technol, Sch Naval Architecture & Ocean Engn, Wuhan 430074, Peoples R China|Huazhong Univ Sci & Technol, Hubei Key Lab Naval Architecture & Ocean Engn Hyd, Wuhan 430074, Peoples R China;

    Univ Liverpool, Sch Engn, Liverpool L69 3GH, Merseyside, England;

    Huazhong Univ Sci & Technol, Sch Naval Architecture & Ocean Engn, Wuhan 430074, Peoples R China|Huazhong Univ Sci & Technol, Hubei Key Lab Naval Architecture & Ocean Engn Hyd, Wuhan 430074, Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号