首页> 外文期刊>Mathematical Problems in Engineering >Construction and Application Research of Isomap-RVM Credit Assessment Model
【24h】

Construction and Application Research of Isomap-RVM Credit Assessment Model

机译:Isomap-RVM信用评估模型的构建与应用研究

获取原文
获取原文并翻译 | 示例

摘要

Credit assessment is the basis and premise of credit risk management systems. Accurate and scientific credit assessment is of great significance to the operational decisions of shareholders, corporate creditors, and management. Building a good and reliable credit assessment model is key to credit assessment. Traditional credit assessment models are constructed using the support vector machine (SVM) combined with certain traditional dimensionality reduction algorithms. When constructing such a model, the dimensionality reduction algorithms are first applied to reduce the dimensions of the samples, so as to prevent the correlation of the samples' characteristic index from being too high. Then, machine learning of the samples will be conducted using the SVM, in order to carry out classification assessment. To further improve the accuracy of credit assessment methods, this paper has introduced more cutting-edge algorithms, applied isometric feature mapping (Isomap) for dimensionality reduction, and used the relevance vector machine (RVM) for credit classification. It has constructed an Isomap-RVM model and used it to conduct financial analysis of China's listed companies. The empirical analysis shows that the credit assessment accuracy of the Isomap-RVM model is significantly higher than that of the Isomap-SVM model and slightly higher than that of the PCA-RVM model. It can correctly identify the credit risks of listed companies.
机译:信用评估是信用风险管理体系的基础和前提。准确而科学的信用评估对股东,公司债权人和管理层的经营决策具有重要意义。建立良好而可靠的信用评估模型是信用评估的关键。传统的信用评估模型是使用支持向量机(SVM)结合某些传统的降维算法构建的。在构建这样的模型时,首先应用降维算法来减小样本的维数,以防止样本的特征指标的相关性过高。然后,将使用支持向量机对样本进行机器学习,以进行分类评估。为了进一步提高信用评估方法的准确性,本文引入了更多的前沿算法,应用了等距特征映射(Isomap)进行降维,并使用了相关向量机(RVM)进行信用分类。它建立了一个Isomap-RVM模型,并用它来对中国上市公司进行财务分析。实证分析表明,Isomap-RVM模型的信用评估准确性显着高于Isomap-SVM模型的信用评估准确性,并且略高于PCA-RVM模型的信用评估准确性。它可以正确识别上市公司的信用风险。

著录项

  • 来源
    《Mathematical Problems in Engineering》 |2015年第17期|197258.1-197258.7|共7页
  • 作者

    Tong Guangrong; Li Siwei;

  • 作者单位

    Wuhan Univ, Sch Econ & Management, Wuhan 430072, Peoples R China.;

    Wuhan Univ, Sch Econ & Management, Wuhan 430072, Peoples R China.;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号