首页> 外文期刊>Mathematical Problems in Engineering >Robust Topology Optimization Based on Stochastic Collocation Methods under Loading Uncertainties
【24h】

Robust Topology Optimization Based on Stochastic Collocation Methods under Loading Uncertainties

机译:不确定载荷下基于随机配置方法的鲁棒拓扑优化

获取原文
获取原文并翻译 | 示例

摘要

A robust topology optimization (RTO) approach with consideration of loading uncertainties is developed in this paper. The stochastic collocation method combined with full tensor product grid and Smolyak sparse grid transforms the robust formulation into a weighted multiple loading deterministic problem at the collocation points. The proposed approach is amenable to implementation in existing commercial topology optimization software package and thus feasible to practical engineering problems. Numerical examples of two- and three-dimensional topology optimization problems are provided to demonstrate the proposed RTO approach and its applications. The optimal topologies obtained from deterministic and robust topology optimization designs under tensor product grid and sparse grid with different levels are compared with one another to investigate the pros and cons of optimization algorithm on final topologies, and an extensive Monte Carlo simulation is also performed to verify the proposed approach.
机译:本文提出了一种考虑负载不确定性的鲁棒拓扑优化(RTO)方法。随机配置方法结合完整张量积网格和Smolyak稀疏网格将鲁棒公式转换为配置点处的加权多重加载确定性问题。所提出的方法适合在现有的商业拓扑优化软件包中实施,因此对于实际工程问题是可行的。提供了二维和三维拓扑优化问题的数值示例,以演示所提出的RTO方法及其应用。将张量乘积网格和稀疏网格在不同级别下从确定性和鲁棒性拓扑优化设计中获得的最佳拓扑相互比较,以研究最终拓扑上优化算法的优缺点,并且还进行了广泛的蒙特卡洛仿真以验证建议的方法。

著录项

  • 来源
    《Mathematical Problems in Engineering》 |2015年第15期|580980.1-580980.14|共14页
  • 作者单位

    Beijing Inst Technol, Sch Mech Engn, Collaborat Innovat Ctr Elect Vehicles Beijing, Beijing 100081, Peoples R China.;

    Beijing Inst Technol, Sch Mech Engn, Collaborat Innovat Ctr Elect Vehicles Beijing, Beijing 100081, Peoples R China.;

    Univ Michigan, Dept Mech Engn, Ann Arbor, MI 48105 USA.;

    Beijing Inst Technol, Sch Mech Engn, Collaborat Innovat Ctr Elect Vehicles Beijing, Beijing 100081, Peoples R China.;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号