首页> 外文期刊>Mathematical Problems in Engineering >A Novel Probabilistic Approach for Vehicle Position Prediction in Free, Partial, and Full GPS Outages
【24h】

A Novel Probabilistic Approach for Vehicle Position Prediction in Free, Partial, and Full GPS Outages

机译:一种用于免费,部分和全部GPS中断的车辆位置预测的新概率方法

获取原文
获取原文并翻译 | 示例

摘要

In this paper, a novel framework is developed with the intention of continuously predicting vehicle position even in the challenging environments such as partial and full GPS outages. To achieve this, the Bayesian-Sparse Random Gaussian Prediction (BSRGP) approach is proposed where the sparse random Gaussian matrix which obeys the restricted isometry property with high probability is adopted to handle the measurement model. During the full GPS outages, the proposed method fuses all available INS measurements to improve the vehicle position prediction whereas in free outages only the GPS data are processed. Besides, the Bayesian inference is used to specifically deal with the vehicle position prediction in partial GPS outages where data from both GPS and INS are taken as inputs. In all cases, measurement noises are assumed to be non-Gaussian distributed and follow the generalized error distribution. The performance of B-SRGP is evaluated with respect to real-world data collected using Smartphone-based vehicular sensing model. The proposed method is tested when measurement noises are both Gaussian and non-Gaussian distributed and also compared with the existing prediction methods. Experimental results confirm that B-SRGP presents higher accuracy prediction and lower mean-squared prediction error for vehicle position when measurement noises are non-Gaussian distributed.
机译:在本文中,开发了一种新颖的框架,旨在即使在充满挑战的环境中(例如部分和全部GPS中断)也可以连续预测车辆位置。为此,提出了一种贝叶斯-稀疏随机高斯预测(BSRGP)方法,其中采用具有高概率服从受限等距特性的稀疏随机高斯矩阵来处理测量模型。在完全GPS中断期间,提出的方法融合了所有可用的INS测量值,以改善车辆位置预测,而在自由中断时,仅处理GPS数据。此外,在部分GPS中断中,将来自GPS和INS的数据都作为输入,贝叶斯推断用于专门处理车辆位置预测。在所有情况下,都假定测量噪声是非高斯分布的,并且遵循广义误差分布。 B-SRGP的性能是针对使用基于智能手机的车辆感应模型收集的真实数据进行评估的。在测量噪声既是高斯分布又是非高斯分布的情况下测试了该方法,并与现有的预测方法进行了比较。实验结果证实,当测量噪声为非高斯分布时,B-SRGP可以为车辆位置提供更高的精度预测和更低的均方根预测误差。

著录项

  • 来源
    《Mathematical Problems in Engineering》 |2015年第13期|189282.1-189282.13|共13页
  • 作者单位

    Hunan Univ, Coll Comp Sci & Elect Engn, Changsha 410082, Hunan, Peoples R China.;

    Hunan Univ, Coll Comp Sci & Elect Engn, Changsha 410082, Hunan, Peoples R China.;

    Hunan Univ, Coll Comp Sci & Elect Engn, Changsha 410082, Hunan, Peoples R China.;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号