首页> 外文期刊>Mathematical Problems in Engineering >Time Series Analysis and Forecasting for Wind Speeds Using Support Vector Regression Coupled with Artificial Intelligent Algorithms
【24h】

Time Series Analysis and Forecasting for Wind Speeds Using Support Vector Regression Coupled with Artificial Intelligent Algorithms

机译:支持向量回归与人工智能算法相结合的风速时间序列分析与预测

获取原文
获取原文并翻译 | 示例

摘要

Wind speed/power has received increasing attention around the earth due to its renewable nature as well as environmental friendliness. With the global installed wind power capacity rapidly increasing, wind industry is growing into a large-scale business. Reliable short-term wind speed forecasts play a practical and crucial role in wind energy conversion systems, such as the dynamic control of wind turbines and power system scheduling. In this paper, an intelligent hybrid model for short-term wind speed prediction is examined; the model is based on cross correlation (CC) analysis and a support vector regression (SVR) model that is coupled with brainstorm optimization (BSO) and cuckoo search (CS) algorithms, which are successfully utilized for parameter determination. The proposed hybrid models were used to forecast short-term wind speeds collected from four wind turbines located on a wind farm in China. The forecasting results demonstrate that the intelligent hybrid models outperform single models for short-term wind speed forecasting, which mainly results from the superiority of BSO and CS for parameter optimization.
机译:风速/功率因其可再生的特性以及对环境的友好性而在全球范围内受到越来越多的关注。随着全球风电装机容量的迅速增加,风电行业正在发展为大型企业。可靠的短期风速预测在风能转换系统中起着至关重要的作用,例如风轮机的动态控制和电力系统调度。本文研究了一种用于短期风速预测的智能混合模型。该模型基于互相关(CC)分析和支持向量回归(SVR)模型,并与头脑风暴优化(BSO)和布谷鸟搜索(CS)算法相结合,可成功地用于参数确定。所提出的混合模型用于预测从位于中国风电场的四台风力涡轮机收集的短期风速。预测结果表明,智能混合模型在短期风速预测方面优于单个模型,这主要是由于BSO和CS在参数优化方面的优势。

著录项

  • 来源
    《Mathematical Problems in Engineering》 |2015年第12期|939305.1-939305.14|共14页
  • 作者单位

    Dongbei Univ Finance & Econ, Sch Stat, Dalian 116025, Peoples R China;

    Lanzhou Univ, Res Sch Arid Environm & Climate Change, MOE Key Lab Western Chinas Environm Syst, Lanzhou 730000, Peoples R China|Lanzhou Univ, Sch Math & Stat, Lanzhou 730000, Peoples R China;

    Lanzhou Univ, Sch Math & Stat, Lanzhou 730000, Peoples R China;

    China Water Resources Beifang Investigat Design &, Tianjin 300222, Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号