首页> 外文期刊>Mathematical Problems in Engineering >An Associate Rules Mining Algorithm Based on Artificial Immune Network for SAR Image Segmentation
【24h】

An Associate Rules Mining Algorithm Based on Artificial Immune Network for SAR Image Segmentation

机译:基于人工免疫网络的SAR规则分割关联规则挖掘算法

获取原文
获取原文并翻译 | 示例

摘要

As a computational intelligence method, artificial immune network (AIN) algorithm has been widely applied to pattern recognition and data classification. In the existing artificial immune network algorithms, the calculating affinity for classifying is based on calculating a certain distance, which may lead to some unsatisfactory results in dealing with data with nominal attributes. To overcome the shortcoming, the association rules are introduced into AIN algorithm, and we propose a new classification algorithm an associate rules mining algorithm based on artificial immune network (ARM-AIN). The new method uses the association rules to represent immune cells and mine the best association rules rather than searching optimal clustering centers. The proposed algorithm has been extensively compared with artificial immune network classification (AINC) algorithm, artificial immune network classification algorithm based on self-adaptive PSO (SPSO-AINC), and PSO-AINC over several large-scale data sets, target recognition of remote sensing image, and segmentation of three different SAR images. The result of experiment indicates the superiority of ARM-AIN in classification accuracy and running time.
机译:作为一种计算智能方法,人工免疫网络(AIN)算法已广泛应用于模式识别和数据分类。在现有的人工免疫网络算法中,分类的计算亲和力是基于一定距离的计算,在处理具有名义属性的数据时可能会导致一些不令人满意的结果。为了克服该缺点,将关联规则引入到AIN算法中,提出了一种新的分类算法,即基于人工免疫网络(ARM-AIN)的关联规则挖掘算法。新方法使用关联规则表示免疫细胞并挖掘最佳关联规则,而不是搜索最佳聚类中心。将该算法与人工免疫网络分类算法,基于自适应PSO的人工免疫网络分类算法(SPSO-AINC)和PSO-AINC在多个大规模数据集上进行了广泛的比较,对远程目标进行了识别。感应图像,以及分割三个不同的SAR图像。实验结果表明,ARM-AIN在分类精度和运行时间上均具有优势。

著录项

  • 来源
    《Mathematical Problems in Engineering》 |2015年第11期|839081.1-839081.14|共14页
  • 作者

    Zhao Mengling; Liu Hongwei;

  • 作者单位

    Xidian Univ, Sch Math & Stat, Xian, Peoples R China.;

    Xian Univ Sci & Technol, Sch Sci, Xian, Peoples R China.;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号