首页> 外文期刊>Mathematical Problems in Engineering >A New Least Squares Support Vector Machines Ensemble Model for Aero Engine Performance Parameter Chaotic Prediction
【24h】

A New Least Squares Support Vector Machines Ensemble Model for Aero Engine Performance Parameter Chaotic Prediction

机译:航空发动机性能参数混沌预测的最小二乘支持向量机集成模型

获取原文
获取原文并翻译 | 示例

摘要

Aiming at the nonlinearity, chaos, and small-sample of aero engine performance parameters data, a new ensemble model, named the least squares support vector machine (LSSVM) ensemble model with phase space reconstruction (PSR) and particle swarm optimization (PSO), is presented. First, to guarantee the diversity of individual members, different single kernel LSSVMs are selected as base predictors, and they also output the primary prediction results independently. Then, all the primary prediction results are integrated to produce the most appropriate prediction results by another particular LSSVM-a multiple kernel LSSVM, which reduces the dependence of modeling accuracy on kernel function and parameters. Phase space reconstruction theory is applied to extract the chaotic characteristic of input data source and reconstruct the data sample, and particle swarm optimization algorithm is used to obtain the best LSSVM individual members. A case study is employed to verify the effectiveness of presented model with real operation data of aero engine. The results show that prediction accuracy of the proposed model improves obviously compared with other three models.
机译:针对航空发动机性能参数数据的非线性,混乱和小样本,建立了一个新的集成模型,称为最小二乘支持向量机(LSSVM)集成模型,具有相空间重构(PSR)和粒子群优化(PSO),被表达。首先,为了保证单个成员的多样性,选择了不同的单个内核LSSVM作为基本预测变量,它们还独立输出主要预测结果。然后,所有主要的预测结果将被另一个特定的LSSVM(多核LSSVM)集成以产生最合适的预测结果,从而减少了建模精度对核函数和参数的依赖性。应用相空间重构理论提取输入数据源的混沌特性并重构数据样本,采用粒子群优化算法获得最佳的LSSVM个体成员。案例研究以航空发动机的实际运行数据验证了模型的有效性。结果表明,与其他三个模型相比,该模型的预测精度有明显提高。

著录项

  • 来源
    《Mathematical Problems in Engineering》 |2016年第2期|4615903.1-4615903.8|共8页
  • 作者单位

    Northwestern Polytech Univ, Sch Mech Engn, Xian 710072, Peoples R China;

    Northwestern Polytech Univ, Sch Mech Engn, Xian 710072, Peoples R China;

    Northwestern Polytech Univ, Sch Mech Engn, Xian 710072, Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号