首页> 外文期刊>Mathematical Problems in Engineering >Study on Leading Vehicle Detection at Night Based on Multisensor and Image Enhancement Method
【24h】

Study on Leading Vehicle Detection at Night Based on Multisensor and Image Enhancement Method

机译:基于多传感器和图像增强方法的夜间领先车辆检测研究

获取原文
获取原文并翻译 | 示例

摘要

Low visibility is one of the reasons for rear accident at night. In this paper, we propose a method to detect the leading vehicle based onmultisensor to decrease rear accidents at night. Then, we use image enhancement algorithm to improve the human vision. First, by millimeter wave radar to get the world coordinate of the preceding vehicles and establish the transformation of the relationship between the world coordinate and image pixels coordinate, we can convert the world coordinates of the radar target to image coordinate in order to form the region of interesting image. And then, by using the image processing method, we can reduce interference from the outside environment. Depending on D-S evidence theory, we can achieve a general value of reliability to test vehicles of interest. The experimental results show that the method can effectively eliminate the influence of illumination condition at night, accurately detect leading vehicles, and determine their location and accurate positioning. In order to improve nighttime driving, the driver shortage vision, reduce rear-end accident. Enhancing nighttime color image by three algorithms, a comparative study and evaluation by three algorithms are presented. The evaluation demonstrates that results after image enhancement satisfy the human visual habits.
机译:能见度低是夜间发生夜间事故的原因之一。本文提出了一种基于多传感器的超前车辆检测方法,以减少夜间的后方事故。然后,我们使用图像增强算法来改善人的视力。首先,通过毫米波雷达获取先前车辆的世界坐标,并建立世界坐标与图像像素坐标之间关系的转换,我们可以将雷达目标的世界坐标转换为图像坐标以形成区域有趣的图像。然后,通过使用图像处理方法,我们可以减少来自外部环境的干扰。根据D-S证据理论,我们可以实现测试目标车辆可靠性的一般价值。实验结果表明,该方法可以有效消除夜间照明条件的影响,准确检测出领先车辆,确定其位置和准确定位。为了改善夜间驾驶,驾驶员视野不足,减少追尾事故。通过三种算法对夜间彩色图像进行了增强,提出了三种算法的对比研究和评价。评估表明,图像增强后的结果满足了人类的视觉习惯。

著录项

  • 来源
    《Mathematical Problems in Engineering》 |2016年第10期|5810910.1-5810910.13|共13页
  • 作者单位

    Jilin Univ, Sch Transportat, Changchun 130022, Peoples R China;

    Jilin Univ, Sch Transportat, Changchun 130022, Peoples R China;

    Jilin Univ, China Japan Union Hosp, Changchun 130033, Peoples R China;

    Jilin Univ, Sch Transportat, Changchun 130022, Peoples R China;

    Jilin Univ, Sch Transportat, Changchun 130022, Peoples R China;

    Jilin Univ, Sch Transportat, Changchun 130022, Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号