首页> 外文期刊>Mathematical Problems in Engineering >GIF Video Sentiment Detection Using Semantic Sequence
【24h】

GIF Video Sentiment Detection Using Semantic Sequence

机译:使用语义序列的GIF视频情感检测

获取原文
获取原文并翻译 | 示例

摘要

With the development of social media, an increasing number of people use short videos in social media applications to express their opinions and sentiments. However, sentiment detection of short videos is a very challenging task because of the semantic gap problem and sequence based sentiment understanding problem. In this context, we propose a SentiPair Sequence based GIF video sentiment detection approach with two contributions. First, we propose a Synset Forest method to extract sentiment related semantic concepts from WordNet to build a robust SentiPair label set. This approach considers the semantic gap between label words and selects a robust label subset which is related to sentiment. Secondly, we propose a SentiPair Sequence based GIF video sentiment detection approach that learns the semantic sequence to understand the sentiment from GIF videos. Our experiment results on GSO-2016 (GIF Sentiment Ontology) data show that our approach not only outperforms four state-of-the-art classification methods but also shows better performance than the state-of-the-art middle level sentiment ontology features, Adjective Noun Pairs (ANPs).
机译:随着社交媒体的发展,越来越多的人在社交媒体应用程序中使用短视频来表达自己的观点和情感。然而,由于语义差距问题和基于序列的情感理解问题,短视频的情感检测是一项非常具有挑战性的任务。在这种情况下,我们提出了一种基于SentiPair序列的GIF视频情感检测方法,该方法具有两个作用。首先,我们提出了一种Synset Forest方法,用于从WordNet中提取与情感相关的语义概念,以构建健壮的SentiPair标签集。这种方法考虑了标签词之间的语义差距,并选择了一个与情感相关的健壮的标签子集。其次,我们提出了一种基于SentiPair序列的GIF视频情感检测方法,该方法通过学习语义序列来理解GIF视频的情感。我们在GSO-2016(GIF情感本体)数据上的实验结果表明,我们的方法不仅优于四种最新的分类方法,而且还比最新的中层情感本体功能表现出更好的性能,形容词名词对(ANP)。

著录项

  • 来源
    《Mathematical Problems in Engineering》 |2017年第2017期|6863174.1-6863174.11|共11页
  • 作者单位

    Xiamen Univ, Cognit Sci Dept, Xiamen, Peoples R China|Xiamen Univ, Fujian Key Lab Brain Inspired Comp Tech & Applica, Xiamen, Peoples R China|Minjiang Univ, Fujian Prov Key Lab Informat Proc & Intelligent C, Fuzhou, Peoples R China;

    Xiamen Univ, Cognit Sci Dept, Xiamen, Peoples R China|Xiamen Univ, Fujian Key Lab Brain Inspired Comp Tech & Applica, Xiamen, Peoples R China|Minjiang Univ, Fujian Prov Key Lab Informat Proc & Intelligent C, Fuzhou, Peoples R China;

    Xiamen Univ, Cognit Sci Dept, Xiamen, Peoples R China|Xiamen Univ, Fujian Key Lab Brain Inspired Comp Tech & Applica, Xiamen, Peoples R China;

    Xiamen Univ, Cognit Sci Dept, Xiamen, Peoples R China|Xiamen Univ, Fujian Key Lab Brain Inspired Comp Tech & Applica, Xiamen, Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号