首页> 外文期刊>Mathematical Problems in Engineering >K-Line Patterns' Predictive Power Analysis Using the Methods of Similarity Match and Clustering
【24h】

K-Line Patterns' Predictive Power Analysis Using the Methods of Similarity Match and Clustering

机译:基于相似度匹配和聚类的K线模式预测能力分析

获取原文
获取原文并翻译 | 示例

摘要

Stock price prediction based on K-line patterns is the essence of candlestick technical analysis. However, there are some disputes on whether the K-line patterns have predictive power in academia. To help resolve the debate, this paper uses the data mining methods of pattern recognition, pattern clustering, and pattern knowledge mining to research the predictive power of K-line patterns. The similarity match model and nearest neighbor-clustering algorithm are proposed for solving the problem of similarity match and clustering of K-line series, respectively. The experiment includes testing the predictive power of the Three Inside Up pattern and Three Inside Down pattern with the testing dataset of the K-line series data of Shanghai 180 index component stocks over the latest 10 years. Experimental results show that (1) the predictive power of a pattern varies a great deal for different shapes and (2) each of the existing K-line patterns requires further classification based on the shape feature for improving the prediction performance.
机译:基于K线模式的股价预测是烛台技术分析的本质。然而,关于K线模式在学术界是否具有预测能力存在一些争议。为了解决这一争论,本文使用模式识别,模式聚类和模式知识挖掘的数据挖掘方法来研究K线模式的预测能力。为了解决K线序列的相似性匹配和聚类问题,提出了相似性匹配模型和最近邻聚类算法。该实验包括使用最近180年的上海180指数成份股的K线系列数据的测试数据集来测试“三个内而上”模式和“三个内而下”模式的预测能力。实验结果表明,(1)模式的预测能力对于不同的形状会有很大的变化,并且(2)每个现有的K线模式都需要基于形状特征进行进一步分类以提高预测性能。

著录项

  • 来源
    《Mathematical Problems in Engineering》 |2017年第2017期|3096917.1-3096917.11|共11页
  • 作者单位

    Tongji Univ, Coll Elect & Informat Engn, Shanghai 200092, Peoples R China;

    Tongji Univ, Coll Elect & Informat Engn, Shanghai 200092, Peoples R China;

    Rabun Gap Nacoochee Sch, Rabun Gap, GA 30568 USA;

    Shanghai Baosight Software Co Ltd, Shanghai 200092, Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号