首页> 外文期刊>Mathematical Problems in Engineering >Short-Term Photovoltaic Power Generation Forecasting Based on Multivariable Grey Theory Model with Parameter Optimization
【24h】

Short-Term Photovoltaic Power Generation Forecasting Based on Multivariable Grey Theory Model with Parameter Optimization

机译:基于参数优化的多变量灰色理论模型的光伏短期发电量预测

获取原文
获取原文并翻译 | 示例

摘要

Owing to the environment, temperature, and so forth, photovoltaic power generation volume is always fluctuating and subsequently impacts power grid planning and operation seriously. Therefore, it is of great importance to make accurate prediction of the power generation of photovoltaic (PV) system in advance. In order to improve the prediction accuracy, in this paper, a novel particle swarm optimization algorithm based multivariable grey theory model is proposed for short-term photovoltaic power generation volume forecasting. It is highlighted that, by integrating particle swarm optimization algorithm, the prediction accuracy of grey theory model is expected to be highly improved. In addition, large amounts of real data from two separate power stations in China are being employed for model verification. The experimental results indicate that, compared with the conventional grey model, the mean relative error in the proposed model has been reduced from 7.14% to 3.53%. The real practice demonstrates that the proposed optimization model outperforms the conventional grey model from both theoretical and practical perspectives.
机译:由于环境,温度等因素,光伏发电量一直在波动,从而严重影响电网的规划和运营。因此,预先准确地预测光伏(PV)系统的发电量非常重要。为了提高预测精度,提出了一种基于粒子群优化算法的多元灰色理论模型,用于短期光伏发电量的预测。突出表明,通过集成粒子群优化算法,有望提高灰色理论模型的预测精度。此外,来自中国两个独立发电站的大量实际数据正被用于模型验证。实验结果表明,与常规灰色模型相比,该模型的平均相对误差已从7.14%降低至3.53%。实际实践表明,从理论和实践的角度来看,所提出的优化模型均优于常规的灰色模型。

著录项

  • 来源
    《Mathematical Problems in Engineering》 |2017年第2017期|5812394.1-5812394.9|共9页
  • 作者单位

    Hubei Univ, Sch Comp & Informat Engn, Wuhan 430062, Hubei, Peoples R China;

    Hubei Univ, Sch Comp & Informat Engn, Wuhan 430062, Hubei, Peoples R China;

    Hubei Univ, Sch Comp & Informat Engn, Wuhan 430062, Hubei, Peoples R China;

    Hubei Univ, Sch Comp & Informat Engn, Wuhan 430062, Hubei, Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号