首页> 外文期刊>Mathematical Problems in Engineering >Detecting Saliency in Infrared Images via Multiscale Local Sparse Representation and Local Contrast Measure
【24h】

Detecting Saliency in Infrared Images via Multiscale Local Sparse Representation and Local Contrast Measure

机译:通过多尺度局部稀疏表示和局部对比度测量来检测红外图像中的显着性

获取原文
获取原文并翻译 | 示例

摘要

For infrared images, it is a formidable challenge to highlight salient regions completely and suppress the background noise effectively at the same time. To handle this problem, a novel saliency detection method based on multiscale local sparse representation and local contrast measure is proposed in this paper. The saliency detection problem is implemented in three stages. First, a multiscale local sparse representation based approach is designed for detecting saliency in infrared images. Using it, multiple saliency maps with various scales are obtained for an infrared image. These maps are then fused to generate a combined saliency map, which can highlight the salient region fully. Second, we adopt a local contrast measure based technique to process the infrared image. It divides the image into a number of image blocks. Then these blocks are utilized to calculate the local contrast to generate a local contrast measure based saliency map. In this map, the background noise can be suppressed effectually. Last, to make full use of the advantages of the above two saliency maps, we propose combining them together using an adaptive fusion scheme. Experimental results show that our method achieves better performance than several state-of-the-art algorithms for saliency detection in infrared images.
机译:对于红外图像,要完全突出显示显着区域并同时有效抑制背景噪声是一个艰巨的挑战。针对这一问题,提出了一种基于多尺度局部稀疏表示和局部对比度测度的显着性检测方法。显着性检测问题分三个阶段实施。首先,设计了一种基于多尺度局部稀疏表示的方法来检测红外图像中的显着性。使用它,可以获得红外图像的各种比例的多个显着图。然后将这些图融合以生成组合的显着图,该图可以充分突出显示显着区域。其次,我们采用基于局部对比度测量的技术来处理红外图像。它将图像分为多个图像块。然后,利用这些块来计算局部对比度,以生成基于局部对比度测量的显着图。在该图中,可以有效地抑制背景噪声。最后,为了充分利用以上两个显着图的优点,我们建议使用自适应融合方案将它们组合在一起。实验结果表明,与几种先进的红外图像显着性检测算法相比,我们的方法具有更好的性能。

著录项

  • 来源
    《Mathematical Problems in Engineering》 |2017年第6期|2483169.1-2483169.11|共11页
  • 作者单位

    Hohai Univ, Coll Comp & Informat, Nanjing 211100, Jiangsu, Peoples R China|Nanjing Univ Sci & Technol, Jiangsu Key Lab Spectral Imaging & Intelligent Se, Nanjing 210094, Jiangsu, Peoples R China;

    Hohai Univ, Coll Comp & Informat, Nanjing 211100, Jiangsu, Peoples R China;

    Nanjing Normal Univ, Sch Phys & Technol, Nanjing 210023, Jiangsu, Peoples R China;

    Nanjing Univ Sci & Technol, Jiangsu Key Lab Spectral Imaging & Intelligent Se, Nanjing 210094, Jiangsu, Peoples R China;

    Hohai Univ, Coll Comp & Informat, Nanjing 211100, Jiangsu, Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号