首页> 外文期刊>Mathematical Problems in Engineering >Robust Master-Slave Synchronization of Neuronal Systems
【24h】

Robust Master-Slave Synchronization of Neuronal Systems

机译:神经元系统的健壮的主从同步

获取原文
获取原文并翻译 | 示例

摘要

The desire to understand physiological mechanisms of neuronal systems has led to the introduction of engineering concepts to explain how the brain works. The synchronization of neurons is a central topic in understanding the behavior of living organisms in neurosciences and has been addressed using concepts from control engineering. We introduce a simple and reliable robust synchronization approach for neuronal systems. The proposed synchronization method is based on a master-slave configuration in conjunction with a coupling input enhanced with compensation of model uncertainties. Our approach has two nice features for the synchronization of neuronal systems: (i) a simple structure that uses the minimum information and (ii) good robustness properties against model uncertainties and noise. Two benchmark neuronal systems, Hodgkin-Huxley and Hindmarsh-Rose neurons, are used to illustrate our findings. The proposed synchronization approach is aimed at gaining insight into the effect of external electrical stimulation of nerve cells.
机译:了解神经系统的生理机制的渴望导致引入了工程学概念来解释大脑如何工作。神经元的同步是理解神经科学中生物体行为的中心主题,并且已经使用控制工程学的概念进行了研究。我们为神经系统引入了一种简单而可靠的鲁棒同步方法。所提出的同步方法基于主从配置,结合耦合输入,并通过补偿模型不确定性来增强。我们的方法具有神经系统同步的两个不错的功能:(i)使用最少信息的简单结构,以及(ii)针对模型不确定性和噪声的良好鲁棒性。两个基准神经元系统,霍奇金-赫克斯利(Hodgkin-Huxley)和欣德马什-罗斯(Hindmarsh-Rose)神经元,用于说明我们的发现。提出的同步方法旨在深入了解神经细胞的外部电刺激的效果。

著录项

  • 来源
    《Mathematical Problems in Engineering》 |2017年第12期|7587294.1-7587294.10|共10页
  • 作者单位

    Univ Autonoma Metropolitana Azcapotzalco, Div Ciencias Basicas & Ingn, Mexico City, DF, Mexico;

    Univ Veracruzana, Fac Ciencias Quim, Campus Xalapa, Xalapa, VER, Mexico;

    Univ Autonoma Metropolitana Azcapotzalco, Div Ciencias Basicas & Ingn, Mexico City, DF, Mexico;

    Univ Autonoma Metropolitana Azcapotzalco, Catedras CONACyT, Mexico City, DF, Mexico;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号