首页> 外文期刊>Mathematical Problems in Engineering >Data-Driven Robust Credit Portfolio Optimization for Investment Decisions in P2P Lending
【24h】

Data-Driven Robust Credit Portfolio Optimization for Investment Decisions in P2P Lending

机译:P2P借贷中基于数据驱动的稳健信贷组合优化决策

获取原文
获取原文并翻译 | 示例

摘要

Peer-to-Peer (P2P) lending has attracted increasing attention recently. As an emerging micro-finance platform, P2P lending plays roles in removing intermediaries, reducing transaction costs, and increasing the benefits of both borrowers and lenders. However, for the P2P lending investment, there are two major challenges, the deficiency of loans' historical observations about the certain borrower and the ambiguity problem of estimated loans' distribution. In order to solve the difficulties, this paper proposes a data-driven robust model of portfolio optimization with relative entropy constraints based on an instance-based credit risk assessment framework. The model exploits a nonparametric kernel approach to estimate P2P loans' expected return and risk under the condition that the historical data of the same borrower is unavailable. Furthermore, we construct a robust mean-variance optimization problem based on relative entropy method for P2P loan investment decision. Using the real-world dataset from a notable P2P lending platform, Prosper, we validate the proposed model. Empirical results reveal that our model provides better investment performances than the existing model.
机译:点对点(P2P)贷款最近引起了越来越多的关注。作为新兴的小额信贷平台,P2P贷款在消除中介机构,降低交易成本以及增加借方和贷方收益方面发挥着作用。但是,对于P2P贷款投资而言,存在两个主要挑战,即对特定借款人的贷款历史观察不足和估计贷款分配的含糊性问题。为了解决这些困难,本文提出了一个基于实例的信用风险评估框架,以数据为驱动的具有相对熵约束的资产组合优化鲁棒模型。该模型利用非参数核方法来估计在同一借款人的历史数据不可用的情况下,P2P贷款的预期收益和风险。此外,基于P2P贷款投资决策的相对熵方法,我们构造了一个鲁棒的均方差优化问题。使用来自著名的P2P借贷平台Prosper的真实数据集,我们验证了提出的模型。实证结果表明,我们的模型提供了比现有模型更好的投资业绩。

著录项

  • 来源
    《Mathematical Problems in Engineering》 |2019年第1期|1902970.1-1902970.10|共10页
  • 作者单位

    Dalian Univ Technol, Fac Management & Econ, Dalian 116024, Peoples R China;

    Dalian Univ Technol, Fac Management & Econ, Dalian 116024, Peoples R China;

    Dalian Univ Technol, Fac Management & Econ, Dalian 116024, Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号