首页> 外文期刊>Mathematical Problems in Engineering >Adaptive PD Control Based on RBF Neural Network for a Wire-Driven Parallel Robot and Prototype Experiments
【24h】

Adaptive PD Control Based on RBF Neural Network for a Wire-Driven Parallel Robot and Prototype Experiments

机译:线性并联机器人基于RBF神经网络的自适应PD控制及样机实验

获取原文
获取原文并翻译 | 示例

摘要

An adaptive PD control scheme is proposed for the support system of a wire-driven parallel robot (WDPR) used in a wind tunnel test. The control scheme combines a PD control and an adaptive control based on a radial basis function (RBF) neural network. The PD control is used to track the trajectory of the end effector of the WDPR. The experimental environment, the external disturbances, and other factors result in uncertainties of some parameters for the WDPR; therefore, the RBF neural network control method is used to approximate the parameters. An adaptive control algorithm is developed to reduce the approximation error and improve the robustness and control precision of the WDPR. It is demonstrated that the closed-loop system is stable based on the Lyapunov stability theory. The simulation results show that the proposed control scheme results in a good performance of the WDPR. The experimental results of the prototype experiments show that the WDPR operates on the desired trajectory; the proposed control method is correct and effective, and the experimental error is small and meets the requirements.
机译:针对风洞试验中使用的线驱动并联机器人(WDPR)的支撑系统,提出了一种自适应PD控制方案。该控制方案结合了PD控制和基于径向基函数(RBF)神经网络的自适应控制。 PD控件用于跟踪WDPR末端执行器的轨迹。实验环境,外部干扰和其他因素导致WDPR某些参数的不确定性。因此,使用RBF神经网络控制方法来近似参数。开发了一种自适应控制算法,以减少近似误差并提高WDPR的鲁棒性和控制精度。基于李雅普诺夫稳定性理论证明了闭环系统是稳定的。仿真结果表明,所提出的控制方案具有良好的WDPR性能。原型实验的实验结果表明WDPR在所需的轨迹上运行;该控制方法正确有效,实验误差小,符合要求。

著录项

  • 来源
    《Mathematical Problems in Engineering》 |2019年第4期|6478506.1-6478506.15|共15页
  • 作者单位

    Xiamen Univ, Xiamen 361005, Fujian, Peoples R China|Nanjing Inst Technol, Nanjing 211167, Jiangsu, Peoples R China;

    Xiamen Univ, Xiamen 361005, Fujian, Peoples R China;

    Xiamen Univ, Xiamen 361005, Fujian, Peoples R China;

    Xiamen Univ, Xiamen 361005, Fujian, Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号