首页> 外文期刊>Mathematical Problems in Engineering >One-Phase Stefan-Like Problems with Latent Heat Depending on the Position and Velocity of the Free Boundary and with Neumann or Robin Boundary Conditions at the Fixed Face
【24h】

One-Phase Stefan-Like Problems with Latent Heat Depending on the Position and Velocity of the Free Boundary and with Neumann or Robin Boundary Conditions at the Fixed Face

机译:潜热的一相斯蒂芬样问题取决于自由边界的位置和速度,以及固定面上的诺伊曼或罗宾边界条件

获取原文
获取原文并翻译 | 示例

摘要

A one-phase Stefan-type problem for a semi-infinite material which has as its main feature a variable latent heat that depends on the power of the position and the velocity of the moving boundary is studied. Exact solutions of similarity type are obtained for the cases when Neumann or Robin boundary conditions are imposed at the fixed face. Required relationships between data are presented in order that these problems become equivalent to the problem where a Dirichlet condition at the fixed face is considered. Moreover, in the case where a Robin condition is prescribed, the limit behaviour is studied when the heat transfer coefficient at the fixed face goes to infinity.
机译:研究了一种半无限材料的单相Stefan型问题,该问题的主要特征是取决于位置的幂和运动边界的速度的可变潜热。对于在固定面上施加Neumann或Robin边界条件的情况,可以获得相似类型的精确解。为了使这些问题变得等同于考虑固定面上的狄利克雷条件的问题,提出了数据之间的必要关系。此外,在规定了罗宾条件的情况下,当固定面上的传热系数达到无穷大时研究极限行为。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号