首页> 外文期刊>Mathematical Problems in Engineering >Dynamic Reduction-Expansion Operator to Improve Performance of Genetic Algorithms for the Traveling Salesman Problem
【24h】

Dynamic Reduction-Expansion Operator to Improve Performance of Genetic Algorithms for the Traveling Salesman Problem

机译:动态约简展开算子提高旅行商问题遗传算法的性能

获取原文
获取原文并翻译 | 示例

摘要

The Traveling Salesman Problem (TSP) is an important routing problem within the transportation industry. However, finding optimal solutions for this problem is not easy due to its computational complexity. In this work, a novel operator based on dynamic reduction-expansion of minimum distance is presented as an initial population strategy to improve the search mechanisms of Genetic Algorithms (GA) for the TSP. This operator, termed as RedExp, consists of four stages: (a) clustering to identify candidate supply/demand locations to be reduced, (b) coding of clustered and nonclustered locations to obtain the set of reduced locations, (c) sequencing of minimum distances for the set of reduced locations (nearest neighbor strategy), and (d) decoding (expansion) of the reduced set of locations. Experiments performed on TSP instances with more than 150 nodes provided evidence that RedExp can improve convergence of the GA and provide more suitable solutions than other approaches focused on the GA's initial population.
机译:旅行商问题(TSP)是运输行业中的重要路由问题。然而,由于其计算复杂性,找到针对该问题的最佳解决方案并不容易。在这项工作中,提出了一种基于最小距离的动态缩减-展开的新颖算子,作为一种初始种群策略,以改善针对TSP的遗传算法(GA)的搜索机制。该操作员称为RedExp,包括四个阶段:(a)聚类以识别要减少的候选供应/需求位置;(b)编码聚类和非聚类位置以获得减少的位置集;(c)最小排序缩小位置的集合的距离(最近邻策略),以及(d)缩小位置的集合的解码(扩展)。在具有150多个节点的TSP实例上进行的实验提供了证据,表明RedExp可以改善GA的收敛性,并提供比其他专注于GA初始种群的方法更合适的解决方案。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号